| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnre | ⊢ ( 𝐴  ∈  ℂ  →  ∃ 𝑥  ∈  ℝ ∃ 𝑦  ∈  ℝ 𝐴  =  ( 𝑥  +  ( i  ·  𝑦 ) ) ) | 
						
							| 2 |  | crre | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( ℜ ‘ ( 𝑥  +  ( i  ·  𝑦 ) ) )  =  𝑥 ) | 
						
							| 3 |  | crim | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( ℑ ‘ ( 𝑥  +  ( i  ·  𝑦 ) ) )  =  𝑦 ) | 
						
							| 4 | 3 | oveq2d | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( i  ·  ( ℑ ‘ ( 𝑥  +  ( i  ·  𝑦 ) ) ) )  =  ( i  ·  𝑦 ) ) | 
						
							| 5 | 2 4 | oveq12d | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( ( ℜ ‘ ( 𝑥  +  ( i  ·  𝑦 ) ) )  +  ( i  ·  ( ℑ ‘ ( 𝑥  +  ( i  ·  𝑦 ) ) ) ) )  =  ( 𝑥  +  ( i  ·  𝑦 ) ) ) | 
						
							| 6 | 5 | eqcomd | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝑥  +  ( i  ·  𝑦 ) )  =  ( ( ℜ ‘ ( 𝑥  +  ( i  ·  𝑦 ) ) )  +  ( i  ·  ( ℑ ‘ ( 𝑥  +  ( i  ·  𝑦 ) ) ) ) ) ) | 
						
							| 7 |  | id | ⊢ ( 𝐴  =  ( 𝑥  +  ( i  ·  𝑦 ) )  →  𝐴  =  ( 𝑥  +  ( i  ·  𝑦 ) ) ) | 
						
							| 8 |  | fveq2 | ⊢ ( 𝐴  =  ( 𝑥  +  ( i  ·  𝑦 ) )  →  ( ℜ ‘ 𝐴 )  =  ( ℜ ‘ ( 𝑥  +  ( i  ·  𝑦 ) ) ) ) | 
						
							| 9 |  | fveq2 | ⊢ ( 𝐴  =  ( 𝑥  +  ( i  ·  𝑦 ) )  →  ( ℑ ‘ 𝐴 )  =  ( ℑ ‘ ( 𝑥  +  ( i  ·  𝑦 ) ) ) ) | 
						
							| 10 | 9 | oveq2d | ⊢ ( 𝐴  =  ( 𝑥  +  ( i  ·  𝑦 ) )  →  ( i  ·  ( ℑ ‘ 𝐴 ) )  =  ( i  ·  ( ℑ ‘ ( 𝑥  +  ( i  ·  𝑦 ) ) ) ) ) | 
						
							| 11 | 8 10 | oveq12d | ⊢ ( 𝐴  =  ( 𝑥  +  ( i  ·  𝑦 ) )  →  ( ( ℜ ‘ 𝐴 )  +  ( i  ·  ( ℑ ‘ 𝐴 ) ) )  =  ( ( ℜ ‘ ( 𝑥  +  ( i  ·  𝑦 ) ) )  +  ( i  ·  ( ℑ ‘ ( 𝑥  +  ( i  ·  𝑦 ) ) ) ) ) ) | 
						
							| 12 | 7 11 | eqeq12d | ⊢ ( 𝐴  =  ( 𝑥  +  ( i  ·  𝑦 ) )  →  ( 𝐴  =  ( ( ℜ ‘ 𝐴 )  +  ( i  ·  ( ℑ ‘ 𝐴 ) ) )  ↔  ( 𝑥  +  ( i  ·  𝑦 ) )  =  ( ( ℜ ‘ ( 𝑥  +  ( i  ·  𝑦 ) ) )  +  ( i  ·  ( ℑ ‘ ( 𝑥  +  ( i  ·  𝑦 ) ) ) ) ) ) ) | 
						
							| 13 | 6 12 | syl5ibrcom | ⊢ ( ( 𝑥  ∈  ℝ  ∧  𝑦  ∈  ℝ )  →  ( 𝐴  =  ( 𝑥  +  ( i  ·  𝑦 ) )  →  𝐴  =  ( ( ℜ ‘ 𝐴 )  +  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ) ) | 
						
							| 14 | 13 | rexlimivv | ⊢ ( ∃ 𝑥  ∈  ℝ ∃ 𝑦  ∈  ℝ 𝐴  =  ( 𝑥  +  ( i  ·  𝑦 ) )  →  𝐴  =  ( ( ℜ ‘ 𝐴 )  +  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ) | 
						
							| 15 | 1 14 | syl | ⊢ ( 𝐴  ∈  ℂ  →  𝐴  =  ( ( ℜ ‘ 𝐴 )  +  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) ) |