| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							recn | 
							⊢ ( 𝐴  ∈  ℝ  →  𝐴  ∈  ℂ )  | 
						
						
							| 2 | 
							
								
							 | 
							ax-icn | 
							⊢ i  ∈  ℂ  | 
						
						
							| 3 | 
							
								
							 | 
							recn | 
							⊢ ( 𝐵  ∈  ℝ  →  𝐵  ∈  ℂ )  | 
						
						
							| 4 | 
							
								
							 | 
							mulcl | 
							⊢ ( ( i  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( i  ·  𝐵 )  ∈  ℂ )  | 
						
						
							| 5 | 
							
								2 3 4
							 | 
							sylancr | 
							⊢ ( 𝐵  ∈  ℝ  →  ( i  ·  𝐵 )  ∈  ℂ )  | 
						
						
							| 6 | 
							
								
							 | 
							addcl | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( i  ·  𝐵 )  ∈  ℂ )  →  ( 𝐴  +  ( i  ·  𝐵 ) )  ∈  ℂ )  | 
						
						
							| 7 | 
							
								1 5 6
							 | 
							syl2an | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐴  +  ( i  ·  𝐵 ) )  ∈  ℂ )  | 
						
						
							| 8 | 
							
								
							 | 
							imval | 
							⊢ ( ( 𝐴  +  ( i  ·  𝐵 ) )  ∈  ℂ  →  ( ℑ ‘ ( 𝐴  +  ( i  ·  𝐵 ) ) )  =  ( ℜ ‘ ( ( 𝐴  +  ( i  ·  𝐵 ) )  /  i ) ) )  | 
						
						
							| 9 | 
							
								7 8
							 | 
							syl | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ℑ ‘ ( 𝐴  +  ( i  ·  𝐵 ) ) )  =  ( ℜ ‘ ( ( 𝐴  +  ( i  ·  𝐵 ) )  /  i ) ) )  | 
						
						
							| 10 | 
							
								2 4
							 | 
							mpan | 
							⊢ ( 𝐵  ∈  ℂ  →  ( i  ·  𝐵 )  ∈  ℂ )  | 
						
						
							| 11 | 
							
								
							 | 
							ine0 | 
							⊢ i  ≠  0  | 
						
						
							| 12 | 
							
								
							 | 
							divdir | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( i  ·  𝐵 )  ∈  ℂ  ∧  ( i  ∈  ℂ  ∧  i  ≠  0 ) )  →  ( ( 𝐴  +  ( i  ·  𝐵 ) )  /  i )  =  ( ( 𝐴  /  i )  +  ( ( i  ·  𝐵 )  /  i ) ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							3expa | 
							⊢ ( ( ( 𝐴  ∈  ℂ  ∧  ( i  ·  𝐵 )  ∈  ℂ )  ∧  ( i  ∈  ℂ  ∧  i  ≠  0 ) )  →  ( ( 𝐴  +  ( i  ·  𝐵 ) )  /  i )  =  ( ( 𝐴  /  i )  +  ( ( i  ·  𝐵 )  /  i ) ) )  | 
						
						
							| 14 | 
							
								2 11 13
							 | 
							mpanr12 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( i  ·  𝐵 )  ∈  ℂ )  →  ( ( 𝐴  +  ( i  ·  𝐵 ) )  /  i )  =  ( ( 𝐴  /  i )  +  ( ( i  ·  𝐵 )  /  i ) ) )  | 
						
						
							| 15 | 
							
								10 14
							 | 
							sylan2 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐴  +  ( i  ·  𝐵 ) )  /  i )  =  ( ( 𝐴  /  i )  +  ( ( i  ·  𝐵 )  /  i ) ) )  | 
						
						
							| 16 | 
							
								
							 | 
							divrec2 | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  i  ∈  ℂ  ∧  i  ≠  0 )  →  ( 𝐴  /  i )  =  ( ( 1  /  i )  ·  𝐴 ) )  | 
						
						
							| 17 | 
							
								2 11 16
							 | 
							mp3an23 | 
							⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  /  i )  =  ( ( 1  /  i )  ·  𝐴 ) )  | 
						
						
							| 18 | 
							
								
							 | 
							irec | 
							⊢ ( 1  /  i )  =  - i  | 
						
						
							| 19 | 
							
								18
							 | 
							oveq1i | 
							⊢ ( ( 1  /  i )  ·  𝐴 )  =  ( - i  ·  𝐴 )  | 
						
						
							| 20 | 
							
								19
							 | 
							a1i | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ( 1  /  i )  ·  𝐴 )  =  ( - i  ·  𝐴 ) )  | 
						
						
							| 21 | 
							
								
							 | 
							mulneg12 | 
							⊢ ( ( i  ∈  ℂ  ∧  𝐴  ∈  ℂ )  →  ( - i  ·  𝐴 )  =  ( i  ·  - 𝐴 ) )  | 
						
						
							| 22 | 
							
								2 21
							 | 
							mpan | 
							⊢ ( 𝐴  ∈  ℂ  →  ( - i  ·  𝐴 )  =  ( i  ·  - 𝐴 ) )  | 
						
						
							| 23 | 
							
								17 20 22
							 | 
							3eqtrd | 
							⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  /  i )  =  ( i  ·  - 𝐴 ) )  | 
						
						
							| 24 | 
							
								
							 | 
							divcan3 | 
							⊢ ( ( 𝐵  ∈  ℂ  ∧  i  ∈  ℂ  ∧  i  ≠  0 )  →  ( ( i  ·  𝐵 )  /  i )  =  𝐵 )  | 
						
						
							| 25 | 
							
								2 11 24
							 | 
							mp3an23 | 
							⊢ ( 𝐵  ∈  ℂ  →  ( ( i  ·  𝐵 )  /  i )  =  𝐵 )  | 
						
						
							| 26 | 
							
								23 25
							 | 
							oveqan12d | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( 𝐴  /  i )  +  ( ( i  ·  𝐵 )  /  i ) )  =  ( ( i  ·  - 𝐴 )  +  𝐵 ) )  | 
						
						
							| 27 | 
							
								
							 | 
							negcl | 
							⊢ ( 𝐴  ∈  ℂ  →  - 𝐴  ∈  ℂ )  | 
						
						
							| 28 | 
							
								
							 | 
							mulcl | 
							⊢ ( ( i  ∈  ℂ  ∧  - 𝐴  ∈  ℂ )  →  ( i  ·  - 𝐴 )  ∈  ℂ )  | 
						
						
							| 29 | 
							
								2 27 28
							 | 
							sylancr | 
							⊢ ( 𝐴  ∈  ℂ  →  ( i  ·  - 𝐴 )  ∈  ℂ )  | 
						
						
							| 30 | 
							
								
							 | 
							addcom | 
							⊢ ( ( ( i  ·  - 𝐴 )  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( i  ·  - 𝐴 )  +  𝐵 )  =  ( 𝐵  +  ( i  ·  - 𝐴 ) ) )  | 
						
						
							| 31 | 
							
								29 30
							 | 
							sylan | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( ( i  ·  - 𝐴 )  +  𝐵 )  =  ( 𝐵  +  ( i  ·  - 𝐴 ) ) )  | 
						
						
							| 32 | 
							
								15 26 31
							 | 
							3eqtrrd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  𝐵  ∈  ℂ )  →  ( 𝐵  +  ( i  ·  - 𝐴 ) )  =  ( ( 𝐴  +  ( i  ·  𝐵 ) )  /  i ) )  | 
						
						
							| 33 | 
							
								1 3 32
							 | 
							syl2an | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( 𝐵  +  ( i  ·  - 𝐴 ) )  =  ( ( 𝐴  +  ( i  ·  𝐵 ) )  /  i ) )  | 
						
						
							| 34 | 
							
								33
							 | 
							fveq2d | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ℜ ‘ ( 𝐵  +  ( i  ·  - 𝐴 ) ) )  =  ( ℜ ‘ ( ( 𝐴  +  ( i  ·  𝐵 ) )  /  i ) ) )  | 
						
						
							| 35 | 
							
								
							 | 
							id | 
							⊢ ( 𝐵  ∈  ℝ  →  𝐵  ∈  ℝ )  | 
						
						
							| 36 | 
							
								
							 | 
							renegcl | 
							⊢ ( 𝐴  ∈  ℝ  →  - 𝐴  ∈  ℝ )  | 
						
						
							| 37 | 
							
								
							 | 
							crre | 
							⊢ ( ( 𝐵  ∈  ℝ  ∧  - 𝐴  ∈  ℝ )  →  ( ℜ ‘ ( 𝐵  +  ( i  ·  - 𝐴 ) ) )  =  𝐵 )  | 
						
						
							| 38 | 
							
								35 36 37
							 | 
							syl2anr | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ℜ ‘ ( 𝐵  +  ( i  ·  - 𝐴 ) ) )  =  𝐵 )  | 
						
						
							| 39 | 
							
								9 34 38
							 | 
							3eqtr2d | 
							⊢ ( ( 𝐴  ∈  ℝ  ∧  𝐵  ∈  ℝ )  →  ( ℑ ‘ ( 𝐴  +  ( i  ·  𝐵 ) ) )  =  𝐵 )  |