| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 2 |  | ax-icn |  |-  _i e. CC | 
						
							| 3 |  | recn |  |-  ( B e. RR -> B e. CC ) | 
						
							| 4 |  | mulcl |  |-  ( ( _i e. CC /\ B e. CC ) -> ( _i x. B ) e. CC ) | 
						
							| 5 | 2 3 4 | sylancr |  |-  ( B e. RR -> ( _i x. B ) e. CC ) | 
						
							| 6 |  | addcl |  |-  ( ( A e. CC /\ ( _i x. B ) e. CC ) -> ( A + ( _i x. B ) ) e. CC ) | 
						
							| 7 | 1 5 6 | syl2an |  |-  ( ( A e. RR /\ B e. RR ) -> ( A + ( _i x. B ) ) e. CC ) | 
						
							| 8 |  | imval |  |-  ( ( A + ( _i x. B ) ) e. CC -> ( Im ` ( A + ( _i x. B ) ) ) = ( Re ` ( ( A + ( _i x. B ) ) / _i ) ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( A e. RR /\ B e. RR ) -> ( Im ` ( A + ( _i x. B ) ) ) = ( Re ` ( ( A + ( _i x. B ) ) / _i ) ) ) | 
						
							| 10 | 2 4 | mpan |  |-  ( B e. CC -> ( _i x. B ) e. CC ) | 
						
							| 11 |  | ine0 |  |-  _i =/= 0 | 
						
							| 12 |  | divdir |  |-  ( ( A e. CC /\ ( _i x. B ) e. CC /\ ( _i e. CC /\ _i =/= 0 ) ) -> ( ( A + ( _i x. B ) ) / _i ) = ( ( A / _i ) + ( ( _i x. B ) / _i ) ) ) | 
						
							| 13 | 12 | 3expa |  |-  ( ( ( A e. CC /\ ( _i x. B ) e. CC ) /\ ( _i e. CC /\ _i =/= 0 ) ) -> ( ( A + ( _i x. B ) ) / _i ) = ( ( A / _i ) + ( ( _i x. B ) / _i ) ) ) | 
						
							| 14 | 2 11 13 | mpanr12 |  |-  ( ( A e. CC /\ ( _i x. B ) e. CC ) -> ( ( A + ( _i x. B ) ) / _i ) = ( ( A / _i ) + ( ( _i x. B ) / _i ) ) ) | 
						
							| 15 | 10 14 | sylan2 |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A + ( _i x. B ) ) / _i ) = ( ( A / _i ) + ( ( _i x. B ) / _i ) ) ) | 
						
							| 16 |  | divrec2 |  |-  ( ( A e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( A / _i ) = ( ( 1 / _i ) x. A ) ) | 
						
							| 17 | 2 11 16 | mp3an23 |  |-  ( A e. CC -> ( A / _i ) = ( ( 1 / _i ) x. A ) ) | 
						
							| 18 |  | irec |  |-  ( 1 / _i ) = -u _i | 
						
							| 19 | 18 | oveq1i |  |-  ( ( 1 / _i ) x. A ) = ( -u _i x. A ) | 
						
							| 20 | 19 | a1i |  |-  ( A e. CC -> ( ( 1 / _i ) x. A ) = ( -u _i x. A ) ) | 
						
							| 21 |  | mulneg12 |  |-  ( ( _i e. CC /\ A e. CC ) -> ( -u _i x. A ) = ( _i x. -u A ) ) | 
						
							| 22 | 2 21 | mpan |  |-  ( A e. CC -> ( -u _i x. A ) = ( _i x. -u A ) ) | 
						
							| 23 | 17 20 22 | 3eqtrd |  |-  ( A e. CC -> ( A / _i ) = ( _i x. -u A ) ) | 
						
							| 24 |  | divcan3 |  |-  ( ( B e. CC /\ _i e. CC /\ _i =/= 0 ) -> ( ( _i x. B ) / _i ) = B ) | 
						
							| 25 | 2 11 24 | mp3an23 |  |-  ( B e. CC -> ( ( _i x. B ) / _i ) = B ) | 
						
							| 26 | 23 25 | oveqan12d |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( A / _i ) + ( ( _i x. B ) / _i ) ) = ( ( _i x. -u A ) + B ) ) | 
						
							| 27 |  | negcl |  |-  ( A e. CC -> -u A e. CC ) | 
						
							| 28 |  | mulcl |  |-  ( ( _i e. CC /\ -u A e. CC ) -> ( _i x. -u A ) e. CC ) | 
						
							| 29 | 2 27 28 | sylancr |  |-  ( A e. CC -> ( _i x. -u A ) e. CC ) | 
						
							| 30 |  | addcom |  |-  ( ( ( _i x. -u A ) e. CC /\ B e. CC ) -> ( ( _i x. -u A ) + B ) = ( B + ( _i x. -u A ) ) ) | 
						
							| 31 | 29 30 | sylan |  |-  ( ( A e. CC /\ B e. CC ) -> ( ( _i x. -u A ) + B ) = ( B + ( _i x. -u A ) ) ) | 
						
							| 32 | 15 26 31 | 3eqtrrd |  |-  ( ( A e. CC /\ B e. CC ) -> ( B + ( _i x. -u A ) ) = ( ( A + ( _i x. B ) ) / _i ) ) | 
						
							| 33 | 1 3 32 | syl2an |  |-  ( ( A e. RR /\ B e. RR ) -> ( B + ( _i x. -u A ) ) = ( ( A + ( _i x. B ) ) / _i ) ) | 
						
							| 34 | 33 | fveq2d |  |-  ( ( A e. RR /\ B e. RR ) -> ( Re ` ( B + ( _i x. -u A ) ) ) = ( Re ` ( ( A + ( _i x. B ) ) / _i ) ) ) | 
						
							| 35 |  | id |  |-  ( B e. RR -> B e. RR ) | 
						
							| 36 |  | renegcl |  |-  ( A e. RR -> -u A e. RR ) | 
						
							| 37 |  | crre |  |-  ( ( B e. RR /\ -u A e. RR ) -> ( Re ` ( B + ( _i x. -u A ) ) ) = B ) | 
						
							| 38 | 35 36 37 | syl2anr |  |-  ( ( A e. RR /\ B e. RR ) -> ( Re ` ( B + ( _i x. -u A ) ) ) = B ) | 
						
							| 39 | 9 34 38 | 3eqtr2d |  |-  ( ( A e. RR /\ B e. RR ) -> ( Im ` ( A + ( _i x. B ) ) ) = B ) |