Description: The imaginary unit _i is not zero. (Contributed by NM, 6-May-1999)
Ref | Expression | ||
---|---|---|---|
Assertion | ine0 | |- _i =/= 0 |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | ax-1ne0 | |- 1 =/= 0 |
|
2 | 1 | neii | |- -. 1 = 0 |
3 | oveq2 | |- ( _i = 0 -> ( _i x. _i ) = ( _i x. 0 ) ) |
|
4 | ax-icn | |- _i e. CC |
|
5 | 4 | mul01i | |- ( _i x. 0 ) = 0 |
6 | 3 5 | eqtr2di | |- ( _i = 0 -> 0 = ( _i x. _i ) ) |
7 | 6 | oveq1d | |- ( _i = 0 -> ( 0 + 1 ) = ( ( _i x. _i ) + 1 ) ) |
8 | ax-1cn | |- 1 e. CC |
|
9 | 8 | addid2i | |- ( 0 + 1 ) = 1 |
10 | ax-i2m1 | |- ( ( _i x. _i ) + 1 ) = 0 |
|
11 | 7 9 10 | 3eqtr3g | |- ( _i = 0 -> 1 = 0 ) |
12 | 2 11 | mto | |- -. _i = 0 |
13 | 12 | neir | |- _i =/= 0 |