| Step | Hyp | Ref | Expression | 
						
							| 1 |  | recn |  |-  ( A e. RR -> A e. CC ) | 
						
							| 2 |  | ax-icn |  |-  _i e. CC | 
						
							| 3 |  | recn |  |-  ( B e. RR -> B e. CC ) | 
						
							| 4 |  | mulcl |  |-  ( ( _i e. CC /\ B e. CC ) -> ( _i x. B ) e. CC ) | 
						
							| 5 | 2 3 4 | sylancr |  |-  ( B e. RR -> ( _i x. B ) e. CC ) | 
						
							| 6 |  | addcl |  |-  ( ( A e. CC /\ ( _i x. B ) e. CC ) -> ( A + ( _i x. B ) ) e. CC ) | 
						
							| 7 | 1 5 6 | syl2an |  |-  ( ( A e. RR /\ B e. RR ) -> ( A + ( _i x. B ) ) e. CC ) | 
						
							| 8 |  | reval |  |-  ( ( A + ( _i x. B ) ) e. CC -> ( Re ` ( A + ( _i x. B ) ) ) = ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) | 
						
							| 9 | 7 8 | syl |  |-  ( ( A e. RR /\ B e. RR ) -> ( Re ` ( A + ( _i x. B ) ) ) = ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) | 
						
							| 10 |  | cjcl |  |-  ( ( A + ( _i x. B ) ) e. CC -> ( * ` ( A + ( _i x. B ) ) ) e. CC ) | 
						
							| 11 | 7 10 | syl |  |-  ( ( A e. RR /\ B e. RR ) -> ( * ` ( A + ( _i x. B ) ) ) e. CC ) | 
						
							| 12 | 7 11 | addcld |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) e. CC ) | 
						
							| 13 | 12 | halfcld |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) e. CC ) | 
						
							| 14 | 1 | adantr |  |-  ( ( A e. RR /\ B e. RR ) -> A e. CC ) | 
						
							| 15 |  | recl |  |-  ( ( A + ( _i x. B ) ) e. CC -> ( Re ` ( A + ( _i x. B ) ) ) e. RR ) | 
						
							| 16 | 7 15 | syl |  |-  ( ( A e. RR /\ B e. RR ) -> ( Re ` ( A + ( _i x. B ) ) ) e. RR ) | 
						
							| 17 | 9 16 | eqeltrrd |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) e. RR ) | 
						
							| 18 |  | simpl |  |-  ( ( A e. RR /\ B e. RR ) -> A e. RR ) | 
						
							| 19 | 17 18 | resubcld |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) e. RR ) | 
						
							| 20 | 2 | a1i |  |-  ( ( A e. RR /\ B e. RR ) -> _i e. CC ) | 
						
							| 21 | 3 | adantl |  |-  ( ( A e. RR /\ B e. RR ) -> B e. CC ) | 
						
							| 22 | 2 21 4 | sylancr |  |-  ( ( A e. RR /\ B e. RR ) -> ( _i x. B ) e. CC ) | 
						
							| 23 | 7 11 | subcld |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) e. CC ) | 
						
							| 24 | 23 | halfcld |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) e. CC ) | 
						
							| 25 | 20 22 24 | subdid |  |-  ( ( A e. RR /\ B e. RR ) -> ( _i x. ( ( _i x. B ) - ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) = ( ( _i x. ( _i x. B ) ) - ( _i x. ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) ) | 
						
							| 26 | 14 22 14 | pnpcand |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( A + ( _i x. B ) ) - ( A + A ) ) = ( ( _i x. B ) - A ) ) | 
						
							| 27 | 22 14 22 | pnpcan2d |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( _i x. B ) + ( _i x. B ) ) - ( A + ( _i x. B ) ) ) = ( ( _i x. B ) - A ) ) | 
						
							| 28 | 26 27 | eqtr4d |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( A + ( _i x. B ) ) - ( A + A ) ) = ( ( ( _i x. B ) + ( _i x. B ) ) - ( A + ( _i x. B ) ) ) ) | 
						
							| 29 | 28 | oveq1d |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) - ( A + A ) ) + ( * ` ( A + ( _i x. B ) ) ) ) = ( ( ( ( _i x. B ) + ( _i x. B ) ) - ( A + ( _i x. B ) ) ) + ( * ` ( A + ( _i x. B ) ) ) ) ) | 
						
							| 30 | 14 14 | addcld |  |-  ( ( A e. RR /\ B e. RR ) -> ( A + A ) e. CC ) | 
						
							| 31 | 7 11 30 | addsubd |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) - ( A + A ) ) = ( ( ( A + ( _i x. B ) ) - ( A + A ) ) + ( * ` ( A + ( _i x. B ) ) ) ) ) | 
						
							| 32 | 22 22 | addcld |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( _i x. B ) + ( _i x. B ) ) e. CC ) | 
						
							| 33 | 32 7 11 | subsubd |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( _i x. B ) + ( _i x. B ) ) - ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) = ( ( ( ( _i x. B ) + ( _i x. B ) ) - ( A + ( _i x. B ) ) ) + ( * ` ( A + ( _i x. B ) ) ) ) ) | 
						
							| 34 | 29 31 33 | 3eqtr4d |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) - ( A + A ) ) = ( ( ( _i x. B ) + ( _i x. B ) ) - ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) ) | 
						
							| 35 | 14 | 2timesd |  |-  ( ( A e. RR /\ B e. RR ) -> ( 2 x. A ) = ( A + A ) ) | 
						
							| 36 | 35 | oveq2d |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) - ( 2 x. A ) ) = ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) - ( A + A ) ) ) | 
						
							| 37 | 22 | 2timesd |  |-  ( ( A e. RR /\ B e. RR ) -> ( 2 x. ( _i x. B ) ) = ( ( _i x. B ) + ( _i x. B ) ) ) | 
						
							| 38 | 37 | oveq1d |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( 2 x. ( _i x. B ) ) - ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) = ( ( ( _i x. B ) + ( _i x. B ) ) - ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) ) | 
						
							| 39 | 34 36 38 | 3eqtr4d |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) - ( 2 x. A ) ) = ( ( 2 x. ( _i x. B ) ) - ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) ) | 
						
							| 40 | 39 | oveq1d |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) - ( 2 x. A ) ) / 2 ) = ( ( ( 2 x. ( _i x. B ) ) - ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) / 2 ) ) | 
						
							| 41 |  | 2cn |  |-  2 e. CC | 
						
							| 42 |  | mulcl |  |-  ( ( 2 e. CC /\ A e. CC ) -> ( 2 x. A ) e. CC ) | 
						
							| 43 | 41 14 42 | sylancr |  |-  ( ( A e. RR /\ B e. RR ) -> ( 2 x. A ) e. CC ) | 
						
							| 44 | 41 | a1i |  |-  ( ( A e. RR /\ B e. RR ) -> 2 e. CC ) | 
						
							| 45 |  | 2ne0 |  |-  2 =/= 0 | 
						
							| 46 | 45 | a1i |  |-  ( ( A e. RR /\ B e. RR ) -> 2 =/= 0 ) | 
						
							| 47 | 12 43 44 46 | divsubdird |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) - ( 2 x. A ) ) / 2 ) = ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - ( ( 2 x. A ) / 2 ) ) ) | 
						
							| 48 |  | mulcl |  |-  ( ( 2 e. CC /\ ( _i x. B ) e. CC ) -> ( 2 x. ( _i x. B ) ) e. CC ) | 
						
							| 49 | 41 22 48 | sylancr |  |-  ( ( A e. RR /\ B e. RR ) -> ( 2 x. ( _i x. B ) ) e. CC ) | 
						
							| 50 | 49 23 44 46 | divsubdird |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( 2 x. ( _i x. B ) ) - ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) / 2 ) = ( ( ( 2 x. ( _i x. B ) ) / 2 ) - ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) | 
						
							| 51 | 40 47 50 | 3eqtr3d |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - ( ( 2 x. A ) / 2 ) ) = ( ( ( 2 x. ( _i x. B ) ) / 2 ) - ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) | 
						
							| 52 | 14 44 46 | divcan3d |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( 2 x. A ) / 2 ) = A ) | 
						
							| 53 | 52 | oveq2d |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - ( ( 2 x. A ) / 2 ) ) = ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) ) | 
						
							| 54 | 22 44 46 | divcan3d |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( 2 x. ( _i x. B ) ) / 2 ) = ( _i x. B ) ) | 
						
							| 55 | 54 | oveq1d |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( 2 x. ( _i x. B ) ) / 2 ) - ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) = ( ( _i x. B ) - ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) | 
						
							| 56 | 51 53 55 | 3eqtr3d |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) = ( ( _i x. B ) - ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) | 
						
							| 57 | 56 | oveq2d |  |-  ( ( A e. RR /\ B e. RR ) -> ( _i x. ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) ) = ( _i x. ( ( _i x. B ) - ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) ) | 
						
							| 58 | 20 20 21 | mulassd |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( _i x. _i ) x. B ) = ( _i x. ( _i x. B ) ) ) | 
						
							| 59 | 20 23 44 46 | divassd |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) / 2 ) = ( _i x. ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) | 
						
							| 60 | 58 59 | oveq12d |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( _i x. _i ) x. B ) - ( ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) / 2 ) ) = ( ( _i x. ( _i x. B ) ) - ( _i x. ( ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) ) ) ) | 
						
							| 61 | 25 57 60 | 3eqtr4d |  |-  ( ( A e. RR /\ B e. RR ) -> ( _i x. ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) ) = ( ( ( _i x. _i ) x. B ) - ( ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) / 2 ) ) ) | 
						
							| 62 |  | ixi |  |-  ( _i x. _i ) = -u 1 | 
						
							| 63 |  | neg1rr |  |-  -u 1 e. RR | 
						
							| 64 | 62 63 | eqeltri |  |-  ( _i x. _i ) e. RR | 
						
							| 65 |  | simpr |  |-  ( ( A e. RR /\ B e. RR ) -> B e. RR ) | 
						
							| 66 |  | remulcl |  |-  ( ( ( _i x. _i ) e. RR /\ B e. RR ) -> ( ( _i x. _i ) x. B ) e. RR ) | 
						
							| 67 | 64 65 66 | sylancr |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( _i x. _i ) x. B ) e. RR ) | 
						
							| 68 |  | cjth |  |-  ( ( A + ( _i x. B ) ) e. CC -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) e. RR /\ ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) e. RR ) ) | 
						
							| 69 | 68 | simprd |  |-  ( ( A + ( _i x. B ) ) e. CC -> ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) e. RR ) | 
						
							| 70 | 7 69 | syl |  |-  ( ( A e. RR /\ B e. RR ) -> ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) e. RR ) | 
						
							| 71 | 70 | rehalfcld |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) / 2 ) e. RR ) | 
						
							| 72 | 67 71 | resubcld |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( _i x. _i ) x. B ) - ( ( _i x. ( ( A + ( _i x. B ) ) - ( * ` ( A + ( _i x. B ) ) ) ) ) / 2 ) ) e. RR ) | 
						
							| 73 | 61 72 | eqeltrd |  |-  ( ( A e. RR /\ B e. RR ) -> ( _i x. ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) ) e. RR ) | 
						
							| 74 |  | rimul |  |-  ( ( ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) e. RR /\ ( _i x. ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) ) e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) = 0 ) | 
						
							| 75 | 19 73 74 | syl2anc |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) - A ) = 0 ) | 
						
							| 76 | 13 14 75 | subeq0d |  |-  ( ( A e. RR /\ B e. RR ) -> ( ( ( A + ( _i x. B ) ) + ( * ` ( A + ( _i x. B ) ) ) ) / 2 ) = A ) | 
						
							| 77 | 9 76 | eqtrd |  |-  ( ( A e. RR /\ B e. RR ) -> ( Re ` ( A + ( _i x. B ) ) ) = A ) |