Metamath Proof Explorer


Theorem subdid

Description: Distribution of multiplication over subtraction. Theorem I.5 of Apostol p. 18. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses mulm1d.1
|- ( ph -> A e. CC )
mulnegd.2
|- ( ph -> B e. CC )
subdid.3
|- ( ph -> C e. CC )
Assertion subdid
|- ( ph -> ( A x. ( B - C ) ) = ( ( A x. B ) - ( A x. C ) ) )

Proof

Step Hyp Ref Expression
1 mulm1d.1
 |-  ( ph -> A e. CC )
2 mulnegd.2
 |-  ( ph -> B e. CC )
3 subdid.3
 |-  ( ph -> C e. CC )
4 subdi
 |-  ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A x. ( B - C ) ) = ( ( A x. B ) - ( A x. C ) ) )
5 1 2 3 4 syl3anc
 |-  ( ph -> ( A x. ( B - C ) ) = ( ( A x. B ) - ( A x. C ) ) )