Description: If the difference between two numbers is zero, they are equal. (Contributed by Mario Carneiro, 27-May-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | negidd.1 | |- ( ph -> A e. CC ) | |
| pncand.2 | |- ( ph -> B e. CC ) | ||
| subeq0d.3 | |- ( ph -> ( A - B ) = 0 ) | ||
| Assertion | subeq0d | |- ( ph -> A = B ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | negidd.1 | |- ( ph -> A e. CC ) | |
| 2 | pncand.2 | |- ( ph -> B e. CC ) | |
| 3 | subeq0d.3 | |- ( ph -> ( A - B ) = 0 ) | |
| 4 | subeq0 | |- ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) = 0 <-> A = B ) ) | |
| 5 | 1 2 4 | syl2anc | |- ( ph -> ( ( A - B ) = 0 <-> A = B ) ) | 
| 6 | 3 5 | mpbid | |- ( ph -> A = B ) |