Metamath Proof Explorer


Theorem subeq0d

Description: If the difference between two numbers is zero, they are equal. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses negidd.1
|- ( ph -> A e. CC )
pncand.2
|- ( ph -> B e. CC )
subeq0d.3
|- ( ph -> ( A - B ) = 0 )
Assertion subeq0d
|- ( ph -> A = B )

Proof

Step Hyp Ref Expression
1 negidd.1
 |-  ( ph -> A e. CC )
2 pncand.2
 |-  ( ph -> B e. CC )
3 subeq0d.3
 |-  ( ph -> ( A - B ) = 0 )
4 subeq0
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) = 0 <-> A = B ) )
5 1 2 4 syl2anc
 |-  ( ph -> ( ( A - B ) = 0 <-> A = B ) )
6 3 5 mpbid
 |-  ( ph -> A = B )