Metamath Proof Explorer


Theorem subne0d

Description: Two unequal numbers have nonzero difference. (Contributed by Mario Carneiro, 1-Jan-2017)

Ref Expression
Hypotheses negidd.1
|- ( ph -> A e. CC )
pncand.2
|- ( ph -> B e. CC )
subne0d.3
|- ( ph -> A =/= B )
Assertion subne0d
|- ( ph -> ( A - B ) =/= 0 )

Proof

Step Hyp Ref Expression
1 negidd.1
 |-  ( ph -> A e. CC )
2 pncand.2
 |-  ( ph -> B e. CC )
3 subne0d.3
 |-  ( ph -> A =/= B )
4 subeq0
 |-  ( ( A e. CC /\ B e. CC ) -> ( ( A - B ) = 0 <-> A = B ) )
5 1 2 4 syl2anc
 |-  ( ph -> ( ( A - B ) = 0 <-> A = B ) )
6 5 necon3bid
 |-  ( ph -> ( ( A - B ) =/= 0 <-> A =/= B ) )
7 3 6 mpbird
 |-  ( ph -> ( A - B ) =/= 0 )