Metamath Proof Explorer


Theorem subne0d

Description: Two unequal numbers have nonzero difference. (Contributed by Mario Carneiro, 1-Jan-2017)

Ref Expression
Hypotheses negidd.1 ( 𝜑𝐴 ∈ ℂ )
pncand.2 ( 𝜑𝐵 ∈ ℂ )
subne0d.3 ( 𝜑𝐴𝐵 )
Assertion subne0d ( 𝜑 → ( 𝐴𝐵 ) ≠ 0 )

Proof

Step Hyp Ref Expression
1 negidd.1 ( 𝜑𝐴 ∈ ℂ )
2 pncand.2 ( 𝜑𝐵 ∈ ℂ )
3 subne0d.3 ( 𝜑𝐴𝐵 )
4 subeq0 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) )
5 1 2 4 syl2anc ( 𝜑 → ( ( 𝐴𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) )
6 5 necon3bid ( 𝜑 → ( ( 𝐴𝐵 ) ≠ 0 ↔ 𝐴𝐵 ) )
7 3 6 mpbird ( 𝜑 → ( 𝐴𝐵 ) ≠ 0 )