Description: Two unequal numbers have nonzero difference. (Contributed by Mario Carneiro, 1-Jan-2017)
Ref | Expression | ||
---|---|---|---|
Hypotheses | negidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
pncand.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | ||
subne0d.3 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | ||
Assertion | subne0d | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ≠ 0 ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | negidd.1 | ⊢ ( 𝜑 → 𝐴 ∈ ℂ ) | |
2 | pncand.2 | ⊢ ( 𝜑 → 𝐵 ∈ ℂ ) | |
3 | subne0d.3 | ⊢ ( 𝜑 → 𝐴 ≠ 𝐵 ) | |
4 | subeq0 | ⊢ ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴 − 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) ) | |
5 | 1 2 4 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) ) |
6 | 5 | necon3bid | ⊢ ( 𝜑 → ( ( 𝐴 − 𝐵 ) ≠ 0 ↔ 𝐴 ≠ 𝐵 ) ) |
7 | 3 6 | mpbird | ⊢ ( 𝜑 → ( 𝐴 − 𝐵 ) ≠ 0 ) |