Metamath Proof Explorer


Theorem subeq0d

Description: If the difference between two numbers is zero, they are equal. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses negidd.1 ( 𝜑𝐴 ∈ ℂ )
pncand.2 ( 𝜑𝐵 ∈ ℂ )
subeq0d.3 ( 𝜑 → ( 𝐴𝐵 ) = 0 )
Assertion subeq0d ( 𝜑𝐴 = 𝐵 )

Proof

Step Hyp Ref Expression
1 negidd.1 ( 𝜑𝐴 ∈ ℂ )
2 pncand.2 ( 𝜑𝐵 ∈ ℂ )
3 subeq0d.3 ( 𝜑 → ( 𝐴𝐵 ) = 0 )
4 subeq0 ( ( 𝐴 ∈ ℂ ∧ 𝐵 ∈ ℂ ) → ( ( 𝐴𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) )
5 1 2 4 syl2anc ( 𝜑 → ( ( 𝐴𝐵 ) = 0 ↔ 𝐴 = 𝐵 ) )
6 3 5 mpbid ( 𝜑𝐴 = 𝐵 )