Metamath Proof Explorer


Theorem subeq0d

Description: If the difference between two numbers is zero, they are equal. (Contributed by Mario Carneiro, 27-May-2016)

Ref Expression
Hypotheses negidd.1 φA
pncand.2 φB
subeq0d.3 φAB=0
Assertion subeq0d φA=B

Proof

Step Hyp Ref Expression
1 negidd.1 φA
2 pncand.2 φB
3 subeq0d.3 φAB=0
4 subeq0 ABAB=0A=B
5 1 2 4 syl2anc φAB=0A=B
6 3 5 mpbid φA=B