| Step | Hyp | Ref | Expression | 
						
							| 1 |  | inelr |  |-  -. _i e. RR | 
						
							| 2 |  | ax-icn |  |-  _i e. CC | 
						
							| 3 | 2 | a1i |  |-  ( ( ( A e. RR /\ ( _i x. A ) e. RR ) /\ A =/= 0 ) -> _i e. CC ) | 
						
							| 4 |  | simpll |  |-  ( ( ( A e. RR /\ ( _i x. A ) e. RR ) /\ A =/= 0 ) -> A e. RR ) | 
						
							| 5 | 4 | recnd |  |-  ( ( ( A e. RR /\ ( _i x. A ) e. RR ) /\ A =/= 0 ) -> A e. CC ) | 
						
							| 6 |  | simpr |  |-  ( ( ( A e. RR /\ ( _i x. A ) e. RR ) /\ A =/= 0 ) -> A =/= 0 ) | 
						
							| 7 | 3 5 6 | divcan4d |  |-  ( ( ( A e. RR /\ ( _i x. A ) e. RR ) /\ A =/= 0 ) -> ( ( _i x. A ) / A ) = _i ) | 
						
							| 8 |  | simplr |  |-  ( ( ( A e. RR /\ ( _i x. A ) e. RR ) /\ A =/= 0 ) -> ( _i x. A ) e. RR ) | 
						
							| 9 | 8 4 6 | redivcld |  |-  ( ( ( A e. RR /\ ( _i x. A ) e. RR ) /\ A =/= 0 ) -> ( ( _i x. A ) / A ) e. RR ) | 
						
							| 10 | 7 9 | eqeltrrd |  |-  ( ( ( A e. RR /\ ( _i x. A ) e. RR ) /\ A =/= 0 ) -> _i e. RR ) | 
						
							| 11 | 10 | ex |  |-  ( ( A e. RR /\ ( _i x. A ) e. RR ) -> ( A =/= 0 -> _i e. RR ) ) | 
						
							| 12 | 11 | necon1bd |  |-  ( ( A e. RR /\ ( _i x. A ) e. RR ) -> ( -. _i e. RR -> A = 0 ) ) | 
						
							| 13 | 1 12 | mpi |  |-  ( ( A e. RR /\ ( _i x. A ) e. RR ) -> A = 0 ) |