| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							simplrl | 
							 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> C e. RR )  | 
						
						
							| 2 | 
							
								1
							 | 
							recnd | 
							 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> C e. CC )  | 
						
						
							| 3 | 
							
								
							 | 
							simplll | 
							 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> A e. RR )  | 
						
						
							| 4 | 
							
								3
							 | 
							recnd | 
							 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> A e. CC )  | 
						
						
							| 5 | 
							
								
							 | 
							simpr | 
							 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) )  | 
						
						
							| 6 | 
							
								
							 | 
							ax-icn | 
							 |-  _i e. CC  | 
						
						
							| 7 | 
							
								6
							 | 
							a1i | 
							 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> _i e. CC )  | 
						
						
							| 8 | 
							
								
							 | 
							simpllr | 
							 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> B e. RR )  | 
						
						
							| 9 | 
							
								8
							 | 
							recnd | 
							 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> B e. CC )  | 
						
						
							| 10 | 
							
								7 9
							 | 
							mulcld | 
							 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( _i x. B ) e. CC )  | 
						
						
							| 11 | 
							
								
							 | 
							simplrr | 
							 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> D e. RR )  | 
						
						
							| 12 | 
							
								11
							 | 
							recnd | 
							 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> D e. CC )  | 
						
						
							| 13 | 
							
								7 12
							 | 
							mulcld | 
							 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( _i x. D ) e. CC )  | 
						
						
							| 14 | 
							
								4 10 2 13
							 | 
							addsubeq4d | 
							 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) <-> ( C - A ) = ( ( _i x. B ) - ( _i x. D ) ) ) )  | 
						
						
							| 15 | 
							
								5 14
							 | 
							mpbid | 
							 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( C - A ) = ( ( _i x. B ) - ( _i x. D ) ) )  | 
						
						
							| 16 | 
							
								8 11
							 | 
							resubcld | 
							 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( B - D ) e. RR )  | 
						
						
							| 17 | 
							
								7 9 12
							 | 
							subdid | 
							 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( _i x. ( B - D ) ) = ( ( _i x. B ) - ( _i x. D ) ) )  | 
						
						
							| 18 | 
							
								17 15
							 | 
							eqtr4d | 
							 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( _i x. ( B - D ) ) = ( C - A ) )  | 
						
						
							| 19 | 
							
								1 3
							 | 
							resubcld | 
							 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( C - A ) e. RR )  | 
						
						
							| 20 | 
							
								18 19
							 | 
							eqeltrd | 
							 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( _i x. ( B - D ) ) e. RR )  | 
						
						
							| 21 | 
							
								
							 | 
							rimul | 
							 |-  ( ( ( B - D ) e. RR /\ ( _i x. ( B - D ) ) e. RR ) -> ( B - D ) = 0 )  | 
						
						
							| 22 | 
							
								16 20 21
							 | 
							syl2anc | 
							 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( B - D ) = 0 )  | 
						
						
							| 23 | 
							
								9 12 22
							 | 
							subeq0d | 
							 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> B = D )  | 
						
						
							| 24 | 
							
								23
							 | 
							oveq2d | 
							 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( _i x. B ) = ( _i x. D ) )  | 
						
						
							| 25 | 
							
								24
							 | 
							oveq1d | 
							 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( ( _i x. B ) - ( _i x. D ) ) = ( ( _i x. D ) - ( _i x. D ) ) )  | 
						
						
							| 26 | 
							
								13
							 | 
							subidd | 
							 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( ( _i x. D ) - ( _i x. D ) ) = 0 )  | 
						
						
							| 27 | 
							
								15 25 26
							 | 
							3eqtrd | 
							 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( C - A ) = 0 )  | 
						
						
							| 28 | 
							
								2 4 27
							 | 
							subeq0d | 
							 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> C = A )  | 
						
						
							| 29 | 
							
								28
							 | 
							eqcomd | 
							 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> A = C )  | 
						
						
							| 30 | 
							
								29 23
							 | 
							jca | 
							 |-  ( ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) /\ ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) ) -> ( A = C /\ B = D ) )  | 
						
						
							| 31 | 
							
								30
							 | 
							ex | 
							 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) -> ( A = C /\ B = D ) ) )  | 
						
						
							| 32 | 
							
								
							 | 
							oveq2 | 
							 |-  ( B = D -> ( _i x. B ) = ( _i x. D ) )  | 
						
						
							| 33 | 
							
								
							 | 
							oveq12 | 
							 |-  ( ( A = C /\ ( _i x. B ) = ( _i x. D ) ) -> ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) )  | 
						
						
							| 34 | 
							
								32 33
							 | 
							sylan2 | 
							 |-  ( ( A = C /\ B = D ) -> ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) )  | 
						
						
							| 35 | 
							
								31 34
							 | 
							impbid1 | 
							 |-  ( ( ( A e. RR /\ B e. RR ) /\ ( C e. RR /\ D e. RR ) ) -> ( ( A + ( _i x. B ) ) = ( C + ( _i x. D ) ) <-> ( A = C /\ B = D ) ) )  |