Metamath Proof Explorer


Theorem rimul

Description: A real number times the imaginary unit is real only if the number is 0. (Contributed by NM, 28-May-1999) (Revised by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion rimul AiAA=0

Proof

Step Hyp Ref Expression
1 inelr ¬i
2 ax-icn i
3 2 a1i AiAA0i
4 simpll AiAA0A
5 4 recnd AiAA0A
6 simpr AiAA0A0
7 3 5 6 divcan4d AiAA0iAA=i
8 simplr AiAA0iA
9 8 4 6 redivcld AiAA0iAA
10 7 9 eqeltrrd AiAA0i
11 10 ex AiAA0i
12 11 necon1bd AiA¬iA=0
13 1 12 mpi AiAA=0