Metamath Proof Explorer


Theorem inelr

Description: The imaginary unit _i is not a real number. (Contributed by NM, 6-May-1999)

Ref Expression
Assertion inelr ¬i

Proof

Step Hyp Ref Expression
1 ine0 i0
2 1 neii ¬i=0
3 0lt1 0<1
4 0re 0
5 1re 1
6 4 5 ltnsymi 0<1¬1<0
7 3 6 ax-mp ¬1<0
8 ixi ii=1
9 5 renegcli 1
10 8 9 eqeltri ii
11 4 10 5 ltadd1i 0<ii0+1<ii+1
12 ax-1cn 1
13 12 addlidi 0+1=1
14 ax-i2m1 ii+1=0
15 13 14 breq12i 0+1<ii+11<0
16 11 15 bitri 0<ii1<0
17 7 16 mtbir ¬0<ii
18 msqgt0 ii00<ii
19 18 ex ii00<ii
20 19 necon1bd i¬0<iii=0
21 17 20 mpi ii=0
22 2 21 mto ¬i