Step |
Hyp |
Ref |
Expression |
1 |
|
ine0 |
⊢ i ≠ 0 |
2 |
1
|
neii |
⊢ ¬ i = 0 |
3 |
|
0lt1 |
⊢ 0 < 1 |
4 |
|
0re |
⊢ 0 ∈ ℝ |
5 |
|
1re |
⊢ 1 ∈ ℝ |
6 |
4 5
|
ltnsymi |
⊢ ( 0 < 1 → ¬ 1 < 0 ) |
7 |
3 6
|
ax-mp |
⊢ ¬ 1 < 0 |
8 |
|
ixi |
⊢ ( i · i ) = - 1 |
9 |
5
|
renegcli |
⊢ - 1 ∈ ℝ |
10 |
8 9
|
eqeltri |
⊢ ( i · i ) ∈ ℝ |
11 |
4 10 5
|
ltadd1i |
⊢ ( 0 < ( i · i ) ↔ ( 0 + 1 ) < ( ( i · i ) + 1 ) ) |
12 |
|
ax-1cn |
⊢ 1 ∈ ℂ |
13 |
12
|
addlidi |
⊢ ( 0 + 1 ) = 1 |
14 |
|
ax-i2m1 |
⊢ ( ( i · i ) + 1 ) = 0 |
15 |
13 14
|
breq12i |
⊢ ( ( 0 + 1 ) < ( ( i · i ) + 1 ) ↔ 1 < 0 ) |
16 |
11 15
|
bitri |
⊢ ( 0 < ( i · i ) ↔ 1 < 0 ) |
17 |
7 16
|
mtbir |
⊢ ¬ 0 < ( i · i ) |
18 |
|
msqgt0 |
⊢ ( ( i ∈ ℝ ∧ i ≠ 0 ) → 0 < ( i · i ) ) |
19 |
18
|
ex |
⊢ ( i ∈ ℝ → ( i ≠ 0 → 0 < ( i · i ) ) ) |
20 |
19
|
necon1bd |
⊢ ( i ∈ ℝ → ( ¬ 0 < ( i · i ) → i = 0 ) ) |
21 |
17 20
|
mpi |
⊢ ( i ∈ ℝ → i = 0 ) |
22 |
2 21
|
mto |
⊢ ¬ i ∈ ℝ |