Step |
Hyp |
Ref |
Expression |
1 |
|
id |
⊢ ( 𝐴 ∈ ℝ → 𝐴 ∈ ℝ ) |
2 |
|
0red |
⊢ ( 𝐴 ∈ ℝ → 0 ∈ ℝ ) |
3 |
1 2
|
lttri2d |
⊢ ( 𝐴 ∈ ℝ → ( 𝐴 ≠ 0 ↔ ( 𝐴 < 0 ∨ 0 < 𝐴 ) ) ) |
4 |
3
|
biimpa |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → ( 𝐴 < 0 ∨ 0 < 𝐴 ) ) |
5 |
|
mullt0 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ∧ ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) ) → 0 < ( 𝐴 · 𝐴 ) ) |
6 |
5
|
anidms |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 < 0 ) → 0 < ( 𝐴 · 𝐴 ) ) |
7 |
|
mulgt0 |
⊢ ( ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ∧ ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) ) → 0 < ( 𝐴 · 𝐴 ) ) |
8 |
7
|
anidms |
⊢ ( ( 𝐴 ∈ ℝ ∧ 0 < 𝐴 ) → 0 < ( 𝐴 · 𝐴 ) ) |
9 |
6 8
|
jaodan |
⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐴 < 0 ∨ 0 < 𝐴 ) ) → 0 < ( 𝐴 · 𝐴 ) ) |
10 |
4 9
|
syldan |
⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐴 ≠ 0 ) → 0 < ( 𝐴 · 𝐴 ) ) |