Metamath Proof Explorer


Theorem msqgt0

Description: A nonzero square is positive. Theorem I.20 of Apostol p. 20. (Contributed by NM, 6-May-1999) (Proof shortened by Mario Carneiro, 27-May-2016)

Ref Expression
Assertion msqgt0
|- ( ( A e. RR /\ A =/= 0 ) -> 0 < ( A x. A ) )

Proof

Step Hyp Ref Expression
1 id
 |-  ( A e. RR -> A e. RR )
2 0red
 |-  ( A e. RR -> 0 e. RR )
3 1 2 lttri2d
 |-  ( A e. RR -> ( A =/= 0 <-> ( A < 0 \/ 0 < A ) ) )
4 3 biimpa
 |-  ( ( A e. RR /\ A =/= 0 ) -> ( A < 0 \/ 0 < A ) )
5 mullt0
 |-  ( ( ( A e. RR /\ A < 0 ) /\ ( A e. RR /\ A < 0 ) ) -> 0 < ( A x. A ) )
6 5 anidms
 |-  ( ( A e. RR /\ A < 0 ) -> 0 < ( A x. A ) )
7 mulgt0
 |-  ( ( ( A e. RR /\ 0 < A ) /\ ( A e. RR /\ 0 < A ) ) -> 0 < ( A x. A ) )
8 7 anidms
 |-  ( ( A e. RR /\ 0 < A ) -> 0 < ( A x. A ) )
9 6 8 jaodan
 |-  ( ( A e. RR /\ ( A < 0 \/ 0 < A ) ) -> 0 < ( A x. A ) )
10 4 9 syldan
 |-  ( ( A e. RR /\ A =/= 0 ) -> 0 < ( A x. A ) )