| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cju |  |-  ( A e. CC -> E! x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) | 
						
							| 2 |  | riotasbc |  |-  ( E! x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) -> [. ( iota_ x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) / x ]. ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) | 
						
							| 3 | 1 2 | syl |  |-  ( A e. CC -> [. ( iota_ x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) / x ]. ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) | 
						
							| 4 |  | cjval |  |-  ( A e. CC -> ( * ` A ) = ( iota_ x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) ) | 
						
							| 5 | 4 | sbceq1d |  |-  ( A e. CC -> ( [. ( * ` A ) / x ]. ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) <-> [. ( iota_ x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) / x ]. ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) ) | 
						
							| 6 | 3 5 | mpbird |  |-  ( A e. CC -> [. ( * ` A ) / x ]. ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) | 
						
							| 7 |  | fvex |  |-  ( * ` A ) e. _V | 
						
							| 8 |  | oveq2 |  |-  ( x = ( * ` A ) -> ( A + x ) = ( A + ( * ` A ) ) ) | 
						
							| 9 | 8 | eleq1d |  |-  ( x = ( * ` A ) -> ( ( A + x ) e. RR <-> ( A + ( * ` A ) ) e. RR ) ) | 
						
							| 10 |  | oveq2 |  |-  ( x = ( * ` A ) -> ( A - x ) = ( A - ( * ` A ) ) ) | 
						
							| 11 | 10 | oveq2d |  |-  ( x = ( * ` A ) -> ( _i x. ( A - x ) ) = ( _i x. ( A - ( * ` A ) ) ) ) | 
						
							| 12 | 11 | eleq1d |  |-  ( x = ( * ` A ) -> ( ( _i x. ( A - x ) ) e. RR <-> ( _i x. ( A - ( * ` A ) ) ) e. RR ) ) | 
						
							| 13 | 9 12 | anbi12d |  |-  ( x = ( * ` A ) -> ( ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) <-> ( ( A + ( * ` A ) ) e. RR /\ ( _i x. ( A - ( * ` A ) ) ) e. RR ) ) ) | 
						
							| 14 | 7 13 | sbcie |  |-  ( [. ( * ` A ) / x ]. ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) <-> ( ( A + ( * ` A ) ) e. RR /\ ( _i x. ( A - ( * ` A ) ) ) e. RR ) ) | 
						
							| 15 | 6 14 | sylib |  |-  ( A e. CC -> ( ( A + ( * ` A ) ) e. RR /\ ( _i x. ( A - ( * ` A ) ) ) e. RR ) ) |