| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnre |
|- ( A e. CC -> E. y e. RR E. z e. RR A = ( y + ( _i x. z ) ) ) |
| 2 |
|
recn |
|- ( y e. RR -> y e. CC ) |
| 3 |
|
ax-icn |
|- _i e. CC |
| 4 |
|
recn |
|- ( z e. RR -> z e. CC ) |
| 5 |
|
mulcl |
|- ( ( _i e. CC /\ z e. CC ) -> ( _i x. z ) e. CC ) |
| 6 |
3 4 5
|
sylancr |
|- ( z e. RR -> ( _i x. z ) e. CC ) |
| 7 |
|
subcl |
|- ( ( y e. CC /\ ( _i x. z ) e. CC ) -> ( y - ( _i x. z ) ) e. CC ) |
| 8 |
2 6 7
|
syl2an |
|- ( ( y e. RR /\ z e. RR ) -> ( y - ( _i x. z ) ) e. CC ) |
| 9 |
2
|
adantr |
|- ( ( y e. RR /\ z e. RR ) -> y e. CC ) |
| 10 |
6
|
adantl |
|- ( ( y e. RR /\ z e. RR ) -> ( _i x. z ) e. CC ) |
| 11 |
9 10 9
|
ppncand |
|- ( ( y e. RR /\ z e. RR ) -> ( ( y + ( _i x. z ) ) + ( y - ( _i x. z ) ) ) = ( y + y ) ) |
| 12 |
|
readdcl |
|- ( ( y e. RR /\ y e. RR ) -> ( y + y ) e. RR ) |
| 13 |
12
|
anidms |
|- ( y e. RR -> ( y + y ) e. RR ) |
| 14 |
13
|
adantr |
|- ( ( y e. RR /\ z e. RR ) -> ( y + y ) e. RR ) |
| 15 |
11 14
|
eqeltrd |
|- ( ( y e. RR /\ z e. RR ) -> ( ( y + ( _i x. z ) ) + ( y - ( _i x. z ) ) ) e. RR ) |
| 16 |
9 10 10
|
pnncand |
|- ( ( y e. RR /\ z e. RR ) -> ( ( y + ( _i x. z ) ) - ( y - ( _i x. z ) ) ) = ( ( _i x. z ) + ( _i x. z ) ) ) |
| 17 |
3
|
a1i |
|- ( ( y e. RR /\ z e. RR ) -> _i e. CC ) |
| 18 |
4
|
adantl |
|- ( ( y e. RR /\ z e. RR ) -> z e. CC ) |
| 19 |
17 18 18
|
adddid |
|- ( ( y e. RR /\ z e. RR ) -> ( _i x. ( z + z ) ) = ( ( _i x. z ) + ( _i x. z ) ) ) |
| 20 |
16 19
|
eqtr4d |
|- ( ( y e. RR /\ z e. RR ) -> ( ( y + ( _i x. z ) ) - ( y - ( _i x. z ) ) ) = ( _i x. ( z + z ) ) ) |
| 21 |
20
|
oveq2d |
|- ( ( y e. RR /\ z e. RR ) -> ( _i x. ( ( y + ( _i x. z ) ) - ( y - ( _i x. z ) ) ) ) = ( _i x. ( _i x. ( z + z ) ) ) ) |
| 22 |
18 18
|
addcld |
|- ( ( y e. RR /\ z e. RR ) -> ( z + z ) e. CC ) |
| 23 |
|
mulass |
|- ( ( _i e. CC /\ _i e. CC /\ ( z + z ) e. CC ) -> ( ( _i x. _i ) x. ( z + z ) ) = ( _i x. ( _i x. ( z + z ) ) ) ) |
| 24 |
3 3 22 23
|
mp3an12i |
|- ( ( y e. RR /\ z e. RR ) -> ( ( _i x. _i ) x. ( z + z ) ) = ( _i x. ( _i x. ( z + z ) ) ) ) |
| 25 |
21 24
|
eqtr4d |
|- ( ( y e. RR /\ z e. RR ) -> ( _i x. ( ( y + ( _i x. z ) ) - ( y - ( _i x. z ) ) ) ) = ( ( _i x. _i ) x. ( z + z ) ) ) |
| 26 |
|
ixi |
|- ( _i x. _i ) = -u 1 |
| 27 |
|
1re |
|- 1 e. RR |
| 28 |
27
|
renegcli |
|- -u 1 e. RR |
| 29 |
26 28
|
eqeltri |
|- ( _i x. _i ) e. RR |
| 30 |
|
simpr |
|- ( ( y e. RR /\ z e. RR ) -> z e. RR ) |
| 31 |
30 30
|
readdcld |
|- ( ( y e. RR /\ z e. RR ) -> ( z + z ) e. RR ) |
| 32 |
|
remulcl |
|- ( ( ( _i x. _i ) e. RR /\ ( z + z ) e. RR ) -> ( ( _i x. _i ) x. ( z + z ) ) e. RR ) |
| 33 |
29 31 32
|
sylancr |
|- ( ( y e. RR /\ z e. RR ) -> ( ( _i x. _i ) x. ( z + z ) ) e. RR ) |
| 34 |
25 33
|
eqeltrd |
|- ( ( y e. RR /\ z e. RR ) -> ( _i x. ( ( y + ( _i x. z ) ) - ( y - ( _i x. z ) ) ) ) e. RR ) |
| 35 |
|
oveq2 |
|- ( x = ( y - ( _i x. z ) ) -> ( ( y + ( _i x. z ) ) + x ) = ( ( y + ( _i x. z ) ) + ( y - ( _i x. z ) ) ) ) |
| 36 |
35
|
eleq1d |
|- ( x = ( y - ( _i x. z ) ) -> ( ( ( y + ( _i x. z ) ) + x ) e. RR <-> ( ( y + ( _i x. z ) ) + ( y - ( _i x. z ) ) ) e. RR ) ) |
| 37 |
|
oveq2 |
|- ( x = ( y - ( _i x. z ) ) -> ( ( y + ( _i x. z ) ) - x ) = ( ( y + ( _i x. z ) ) - ( y - ( _i x. z ) ) ) ) |
| 38 |
37
|
oveq2d |
|- ( x = ( y - ( _i x. z ) ) -> ( _i x. ( ( y + ( _i x. z ) ) - x ) ) = ( _i x. ( ( y + ( _i x. z ) ) - ( y - ( _i x. z ) ) ) ) ) |
| 39 |
38
|
eleq1d |
|- ( x = ( y - ( _i x. z ) ) -> ( ( _i x. ( ( y + ( _i x. z ) ) - x ) ) e. RR <-> ( _i x. ( ( y + ( _i x. z ) ) - ( y - ( _i x. z ) ) ) ) e. RR ) ) |
| 40 |
36 39
|
anbi12d |
|- ( x = ( y - ( _i x. z ) ) -> ( ( ( ( y + ( _i x. z ) ) + x ) e. RR /\ ( _i x. ( ( y + ( _i x. z ) ) - x ) ) e. RR ) <-> ( ( ( y + ( _i x. z ) ) + ( y - ( _i x. z ) ) ) e. RR /\ ( _i x. ( ( y + ( _i x. z ) ) - ( y - ( _i x. z ) ) ) ) e. RR ) ) ) |
| 41 |
40
|
rspcev |
|- ( ( ( y - ( _i x. z ) ) e. CC /\ ( ( ( y + ( _i x. z ) ) + ( y - ( _i x. z ) ) ) e. RR /\ ( _i x. ( ( y + ( _i x. z ) ) - ( y - ( _i x. z ) ) ) ) e. RR ) ) -> E. x e. CC ( ( ( y + ( _i x. z ) ) + x ) e. RR /\ ( _i x. ( ( y + ( _i x. z ) ) - x ) ) e. RR ) ) |
| 42 |
8 15 34 41
|
syl12anc |
|- ( ( y e. RR /\ z e. RR ) -> E. x e. CC ( ( ( y + ( _i x. z ) ) + x ) e. RR /\ ( _i x. ( ( y + ( _i x. z ) ) - x ) ) e. RR ) ) |
| 43 |
|
oveq1 |
|- ( A = ( y + ( _i x. z ) ) -> ( A + x ) = ( ( y + ( _i x. z ) ) + x ) ) |
| 44 |
43
|
eleq1d |
|- ( A = ( y + ( _i x. z ) ) -> ( ( A + x ) e. RR <-> ( ( y + ( _i x. z ) ) + x ) e. RR ) ) |
| 45 |
|
oveq1 |
|- ( A = ( y + ( _i x. z ) ) -> ( A - x ) = ( ( y + ( _i x. z ) ) - x ) ) |
| 46 |
45
|
oveq2d |
|- ( A = ( y + ( _i x. z ) ) -> ( _i x. ( A - x ) ) = ( _i x. ( ( y + ( _i x. z ) ) - x ) ) ) |
| 47 |
46
|
eleq1d |
|- ( A = ( y + ( _i x. z ) ) -> ( ( _i x. ( A - x ) ) e. RR <-> ( _i x. ( ( y + ( _i x. z ) ) - x ) ) e. RR ) ) |
| 48 |
44 47
|
anbi12d |
|- ( A = ( y + ( _i x. z ) ) -> ( ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) <-> ( ( ( y + ( _i x. z ) ) + x ) e. RR /\ ( _i x. ( ( y + ( _i x. z ) ) - x ) ) e. RR ) ) ) |
| 49 |
48
|
rexbidv |
|- ( A = ( y + ( _i x. z ) ) -> ( E. x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) <-> E. x e. CC ( ( ( y + ( _i x. z ) ) + x ) e. RR /\ ( _i x. ( ( y + ( _i x. z ) ) - x ) ) e. RR ) ) ) |
| 50 |
42 49
|
syl5ibrcom |
|- ( ( y e. RR /\ z e. RR ) -> ( A = ( y + ( _i x. z ) ) -> E. x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) ) |
| 51 |
50
|
rexlimivv |
|- ( E. y e. RR E. z e. RR A = ( y + ( _i x. z ) ) -> E. x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) |
| 52 |
1 51
|
syl |
|- ( A e. CC -> E. x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) |
| 53 |
|
an4 |
|- ( ( ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) /\ ( ( A + y ) e. RR /\ ( _i x. ( A - y ) ) e. RR ) ) <-> ( ( ( A + x ) e. RR /\ ( A + y ) e. RR ) /\ ( ( _i x. ( A - x ) ) e. RR /\ ( _i x. ( A - y ) ) e. RR ) ) ) |
| 54 |
|
resubcl |
|- ( ( ( A + x ) e. RR /\ ( A + y ) e. RR ) -> ( ( A + x ) - ( A + y ) ) e. RR ) |
| 55 |
|
pnpcan |
|- ( ( A e. CC /\ x e. CC /\ y e. CC ) -> ( ( A + x ) - ( A + y ) ) = ( x - y ) ) |
| 56 |
55
|
3expb |
|- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( ( A + x ) - ( A + y ) ) = ( x - y ) ) |
| 57 |
56
|
eleq1d |
|- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( ( ( A + x ) - ( A + y ) ) e. RR <-> ( x - y ) e. RR ) ) |
| 58 |
54 57
|
imbitrid |
|- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( ( ( A + x ) e. RR /\ ( A + y ) e. RR ) -> ( x - y ) e. RR ) ) |
| 59 |
|
resubcl |
|- ( ( ( _i x. ( A - y ) ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) -> ( ( _i x. ( A - y ) ) - ( _i x. ( A - x ) ) ) e. RR ) |
| 60 |
59
|
ancoms |
|- ( ( ( _i x. ( A - x ) ) e. RR /\ ( _i x. ( A - y ) ) e. RR ) -> ( ( _i x. ( A - y ) ) - ( _i x. ( A - x ) ) ) e. RR ) |
| 61 |
3
|
a1i |
|- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> _i e. CC ) |
| 62 |
|
subcl |
|- ( ( A e. CC /\ y e. CC ) -> ( A - y ) e. CC ) |
| 63 |
62
|
adantrl |
|- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( A - y ) e. CC ) |
| 64 |
|
subcl |
|- ( ( A e. CC /\ x e. CC ) -> ( A - x ) e. CC ) |
| 65 |
64
|
adantrr |
|- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( A - x ) e. CC ) |
| 66 |
61 63 65
|
subdid |
|- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( _i x. ( ( A - y ) - ( A - x ) ) ) = ( ( _i x. ( A - y ) ) - ( _i x. ( A - x ) ) ) ) |
| 67 |
|
nnncan1 |
|- ( ( A e. CC /\ y e. CC /\ x e. CC ) -> ( ( A - y ) - ( A - x ) ) = ( x - y ) ) |
| 68 |
67
|
3com23 |
|- ( ( A e. CC /\ x e. CC /\ y e. CC ) -> ( ( A - y ) - ( A - x ) ) = ( x - y ) ) |
| 69 |
68
|
3expb |
|- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( ( A - y ) - ( A - x ) ) = ( x - y ) ) |
| 70 |
69
|
oveq2d |
|- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( _i x. ( ( A - y ) - ( A - x ) ) ) = ( _i x. ( x - y ) ) ) |
| 71 |
66 70
|
eqtr3d |
|- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( ( _i x. ( A - y ) ) - ( _i x. ( A - x ) ) ) = ( _i x. ( x - y ) ) ) |
| 72 |
71
|
eleq1d |
|- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( ( ( _i x. ( A - y ) ) - ( _i x. ( A - x ) ) ) e. RR <-> ( _i x. ( x - y ) ) e. RR ) ) |
| 73 |
60 72
|
imbitrid |
|- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( ( ( _i x. ( A - x ) ) e. RR /\ ( _i x. ( A - y ) ) e. RR ) -> ( _i x. ( x - y ) ) e. RR ) ) |
| 74 |
58 73
|
anim12d |
|- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( ( ( ( A + x ) e. RR /\ ( A + y ) e. RR ) /\ ( ( _i x. ( A - x ) ) e. RR /\ ( _i x. ( A - y ) ) e. RR ) ) -> ( ( x - y ) e. RR /\ ( _i x. ( x - y ) ) e. RR ) ) ) |
| 75 |
|
rimul |
|- ( ( ( x - y ) e. RR /\ ( _i x. ( x - y ) ) e. RR ) -> ( x - y ) = 0 ) |
| 76 |
75
|
a1i |
|- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( ( ( x - y ) e. RR /\ ( _i x. ( x - y ) ) e. RR ) -> ( x - y ) = 0 ) ) |
| 77 |
|
subeq0 |
|- ( ( x e. CC /\ y e. CC ) -> ( ( x - y ) = 0 <-> x = y ) ) |
| 78 |
77
|
biimpd |
|- ( ( x e. CC /\ y e. CC ) -> ( ( x - y ) = 0 -> x = y ) ) |
| 79 |
78
|
adantl |
|- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( ( x - y ) = 0 -> x = y ) ) |
| 80 |
74 76 79
|
3syld |
|- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( ( ( ( A + x ) e. RR /\ ( A + y ) e. RR ) /\ ( ( _i x. ( A - x ) ) e. RR /\ ( _i x. ( A - y ) ) e. RR ) ) -> x = y ) ) |
| 81 |
53 80
|
biimtrid |
|- ( ( A e. CC /\ ( x e. CC /\ y e. CC ) ) -> ( ( ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) /\ ( ( A + y ) e. RR /\ ( _i x. ( A - y ) ) e. RR ) ) -> x = y ) ) |
| 82 |
81
|
ralrimivva |
|- ( A e. CC -> A. x e. CC A. y e. CC ( ( ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) /\ ( ( A + y ) e. RR /\ ( _i x. ( A - y ) ) e. RR ) ) -> x = y ) ) |
| 83 |
|
oveq2 |
|- ( x = y -> ( A + x ) = ( A + y ) ) |
| 84 |
83
|
eleq1d |
|- ( x = y -> ( ( A + x ) e. RR <-> ( A + y ) e. RR ) ) |
| 85 |
|
oveq2 |
|- ( x = y -> ( A - x ) = ( A - y ) ) |
| 86 |
85
|
oveq2d |
|- ( x = y -> ( _i x. ( A - x ) ) = ( _i x. ( A - y ) ) ) |
| 87 |
86
|
eleq1d |
|- ( x = y -> ( ( _i x. ( A - x ) ) e. RR <-> ( _i x. ( A - y ) ) e. RR ) ) |
| 88 |
84 87
|
anbi12d |
|- ( x = y -> ( ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) <-> ( ( A + y ) e. RR /\ ( _i x. ( A - y ) ) e. RR ) ) ) |
| 89 |
88
|
reu4 |
|- ( E! x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) <-> ( E. x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) /\ A. x e. CC A. y e. CC ( ( ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) /\ ( ( A + y ) e. RR /\ ( _i x. ( A - y ) ) e. RR ) ) -> x = y ) ) ) |
| 90 |
52 82 89
|
sylanbrc |
|- ( A e. CC -> E! x e. CC ( ( A + x ) e. RR /\ ( _i x. ( A - x ) ) e. RR ) ) |