Step |
Hyp |
Ref |
Expression |
1 |
|
subcl |
|- ( ( A e. CC /\ C e. CC ) -> ( A - C ) e. CC ) |
2 |
1
|
3adant2 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - C ) e. CC ) |
3 |
|
sub32 |
|- ( ( A e. CC /\ B e. CC /\ ( A - C ) e. CC ) -> ( ( A - B ) - ( A - C ) ) = ( ( A - ( A - C ) ) - B ) ) |
4 |
2 3
|
syld3an3 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) - ( A - C ) ) = ( ( A - ( A - C ) ) - B ) ) |
5 |
|
nncan |
|- ( ( A e. CC /\ C e. CC ) -> ( A - ( A - C ) ) = C ) |
6 |
5
|
3adant2 |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( A - ( A - C ) ) = C ) |
7 |
6
|
oveq1d |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - ( A - C ) ) - B ) = ( C - B ) ) |
8 |
4 7
|
eqtrd |
|- ( ( A e. CC /\ B e. CC /\ C e. CC ) -> ( ( A - B ) - ( A - C ) ) = ( C - B ) ) |