Description: Cancellation law for subtraction. (Contributed by NM, 21-Jun-2005) (Proof shortened by Andrew Salmon, 19-Nov-2011)
Ref | Expression | ||
---|---|---|---|
Assertion | nncan | |- ( ( A e. CC /\ B e. CC ) -> ( A - ( A - B ) ) = B ) |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subsub2 | |- ( ( A e. CC /\ A e. CC /\ B e. CC ) -> ( A - ( A - B ) ) = ( A + ( B - A ) ) ) |
|
2 | 1 | 3anidm12 | |- ( ( A e. CC /\ B e. CC ) -> ( A - ( A - B ) ) = ( A + ( B - A ) ) ) |
3 | pncan3 | |- ( ( A e. CC /\ B e. CC ) -> ( A + ( B - A ) ) = B ) |
|
4 | 2 3 | eqtrd | |- ( ( A e. CC /\ B e. CC ) -> ( A - ( A - B ) ) = B ) |