Metamath Proof Explorer


Theorem cjth

Description: The defining property of the complex conjugate. (Contributed by Mario Carneiro, 6-Nov-2013)

Ref Expression
Assertion cjth AA+AiAA

Proof

Step Hyp Ref Expression
1 cju A∃!xA+xiAx
2 riotasbc ∃!xA+xiAx[˙ιx|A+xiAx/x]˙A+xiAx
3 1 2 syl A[˙ιx|A+xiAx/x]˙A+xiAx
4 cjval AA=ιx|A+xiAx
5 4 sbceq1d A[˙A/x]˙A+xiAx[˙ιx|A+xiAx/x]˙A+xiAx
6 3 5 mpbird A[˙A/x]˙A+xiAx
7 fvex AV
8 oveq2 x=AA+x=A+A
9 8 eleq1d x=AA+xA+A
10 oveq2 x=AAx=AA
11 10 oveq2d x=AiAx=iAA
12 11 eleq1d x=AiAxiAA
13 9 12 anbi12d x=AA+xiAxA+AiAA
14 7 13 sbcie [˙A/x]˙A+xiAxA+AiAA
15 6 14 sylib AA+AiAA