| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							reim0 | 
							⊢ ( 𝐴  ∈  ℝ  →  ( ℑ ‘ 𝐴 )  =  0 )  | 
						
						
							| 2 | 
							
								
							 | 
							replim | 
							⊢ ( 𝐴  ∈  ℂ  →  𝐴  =  ( ( ℜ ‘ 𝐴 )  +  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) )  | 
						
						
							| 3 | 
							
								2
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  𝐴  =  ( ( ℜ ‘ 𝐴 )  +  ( i  ·  ( ℑ ‘ 𝐴 ) ) ) )  | 
						
						
							| 4 | 
							
								
							 | 
							oveq2 | 
							⊢ ( ( ℑ ‘ 𝐴 )  =  0  →  ( i  ·  ( ℑ ‘ 𝐴 ) )  =  ( i  ·  0 ) )  | 
						
						
							| 5 | 
							
								
							 | 
							it0e0 | 
							⊢ ( i  ·  0 )  =  0  | 
						
						
							| 6 | 
							
								4 5
							 | 
							eqtrdi | 
							⊢ ( ( ℑ ‘ 𝐴 )  =  0  →  ( i  ·  ( ℑ ‘ 𝐴 ) )  =  0 )  | 
						
						
							| 7 | 
							
								6
							 | 
							oveq2d | 
							⊢ ( ( ℑ ‘ 𝐴 )  =  0  →  ( ( ℜ ‘ 𝐴 )  +  ( i  ·  ( ℑ ‘ 𝐴 ) ) )  =  ( ( ℜ ‘ 𝐴 )  +  0 ) )  | 
						
						
							| 8 | 
							
								
							 | 
							recl | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ 𝐴 )  ∈  ℝ )  | 
						
						
							| 9 | 
							
								8
							 | 
							recnd | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ℜ ‘ 𝐴 )  ∈  ℂ )  | 
						
						
							| 10 | 
							
								9
							 | 
							addridd | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ( ℜ ‘ 𝐴 )  +  0 )  =  ( ℜ ‘ 𝐴 ) )  | 
						
						
							| 11 | 
							
								7 10
							 | 
							sylan9eqr | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( ( ℜ ‘ 𝐴 )  +  ( i  ·  ( ℑ ‘ 𝐴 ) ) )  =  ( ℜ ‘ 𝐴 ) )  | 
						
						
							| 12 | 
							
								3 11
							 | 
							eqtrd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  𝐴  =  ( ℜ ‘ 𝐴 ) )  | 
						
						
							| 13 | 
							
								8
							 | 
							adantr | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  ( ℜ ‘ 𝐴 )  ∈  ℝ )  | 
						
						
							| 14 | 
							
								12 13
							 | 
							eqeltrd | 
							⊢ ( ( 𝐴  ∈  ℂ  ∧  ( ℑ ‘ 𝐴 )  =  0 )  →  𝐴  ∈  ℝ )  | 
						
						
							| 15 | 
							
								14
							 | 
							ex | 
							⊢ ( 𝐴  ∈  ℂ  →  ( ( ℑ ‘ 𝐴 )  =  0  →  𝐴  ∈  ℝ ) )  | 
						
						
							| 16 | 
							
								1 15
							 | 
							impbid2 | 
							⊢ ( 𝐴  ∈  ℂ  →  ( 𝐴  ∈  ℝ  ↔  ( ℑ ‘ 𝐴 )  =  0 ) )  |