Metamath Proof Explorer


Theorem reim0b

Description: A number is real iff its imaginary part is 0. (Contributed by NM, 26-Sep-2005)

Ref Expression
Assertion reim0b AAA=0

Proof

Step Hyp Ref Expression
1 reim0 AA=0
2 replim AA=A+iA
3 2 adantr AA=0A=A+iA
4 oveq2 A=0iA=i0
5 it0e0 i0=0
6 4 5 eqtrdi A=0iA=0
7 6 oveq2d A=0A+iA=A+0
8 recl AA
9 8 recnd AA
10 9 addridd AA+0=A
11 7 10 sylan9eqr AA=0A+iA=A
12 3 11 eqtrd AA=0A=A
13 8 adantr AA=0A
14 12 13 eqeltrd AA=0A
15 14 ex AA=0A
16 1 15 impbid2 AAA=0