| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elq |
|- ( z e. QQ <-> E. x e. ZZ E. y e. NN z = ( x / y ) ) |
| 2 |
|
drngring |
|- ( ( CCfld |`s R ) e. DivRing -> ( CCfld |`s R ) e. Ring ) |
| 3 |
2
|
ad2antlr |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ( CCfld |`s R ) e. Ring ) |
| 4 |
|
zsssubrg |
|- ( R e. ( SubRing ` CCfld ) -> ZZ C_ R ) |
| 5 |
4
|
ad2antrr |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ZZ C_ R ) |
| 6 |
|
eqid |
|- ( CCfld |`s R ) = ( CCfld |`s R ) |
| 7 |
6
|
subrgbas |
|- ( R e. ( SubRing ` CCfld ) -> R = ( Base ` ( CCfld |`s R ) ) ) |
| 8 |
7
|
ad2antrr |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> R = ( Base ` ( CCfld |`s R ) ) ) |
| 9 |
5 8
|
sseqtrd |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ZZ C_ ( Base ` ( CCfld |`s R ) ) ) |
| 10 |
|
simprl |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> x e. ZZ ) |
| 11 |
9 10
|
sseldd |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> x e. ( Base ` ( CCfld |`s R ) ) ) |
| 12 |
|
nnz |
|- ( y e. NN -> y e. ZZ ) |
| 13 |
12
|
ad2antll |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> y e. ZZ ) |
| 14 |
9 13
|
sseldd |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> y e. ( Base ` ( CCfld |`s R ) ) ) |
| 15 |
|
nnne0 |
|- ( y e. NN -> y =/= 0 ) |
| 16 |
15
|
ad2antll |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> y =/= 0 ) |
| 17 |
|
cnfld0 |
|- 0 = ( 0g ` CCfld ) |
| 18 |
6 17
|
subrg0 |
|- ( R e. ( SubRing ` CCfld ) -> 0 = ( 0g ` ( CCfld |`s R ) ) ) |
| 19 |
18
|
ad2antrr |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> 0 = ( 0g ` ( CCfld |`s R ) ) ) |
| 20 |
16 19
|
neeqtrd |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> y =/= ( 0g ` ( CCfld |`s R ) ) ) |
| 21 |
|
eqid |
|- ( Base ` ( CCfld |`s R ) ) = ( Base ` ( CCfld |`s R ) ) |
| 22 |
|
eqid |
|- ( Unit ` ( CCfld |`s R ) ) = ( Unit ` ( CCfld |`s R ) ) |
| 23 |
|
eqid |
|- ( 0g ` ( CCfld |`s R ) ) = ( 0g ` ( CCfld |`s R ) ) |
| 24 |
21 22 23
|
drngunit |
|- ( ( CCfld |`s R ) e. DivRing -> ( y e. ( Unit ` ( CCfld |`s R ) ) <-> ( y e. ( Base ` ( CCfld |`s R ) ) /\ y =/= ( 0g ` ( CCfld |`s R ) ) ) ) ) |
| 25 |
24
|
ad2antlr |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ( y e. ( Unit ` ( CCfld |`s R ) ) <-> ( y e. ( Base ` ( CCfld |`s R ) ) /\ y =/= ( 0g ` ( CCfld |`s R ) ) ) ) ) |
| 26 |
14 20 25
|
mpbir2and |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> y e. ( Unit ` ( CCfld |`s R ) ) ) |
| 27 |
|
eqid |
|- ( /r ` ( CCfld |`s R ) ) = ( /r ` ( CCfld |`s R ) ) |
| 28 |
21 22 27
|
dvrcl |
|- ( ( ( CCfld |`s R ) e. Ring /\ x e. ( Base ` ( CCfld |`s R ) ) /\ y e. ( Unit ` ( CCfld |`s R ) ) ) -> ( x ( /r ` ( CCfld |`s R ) ) y ) e. ( Base ` ( CCfld |`s R ) ) ) |
| 29 |
3 11 26 28
|
syl3anc |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ( x ( /r ` ( CCfld |`s R ) ) y ) e. ( Base ` ( CCfld |`s R ) ) ) |
| 30 |
|
simpll |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> R e. ( SubRing ` CCfld ) ) |
| 31 |
5 10
|
sseldd |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> x e. R ) |
| 32 |
|
cnflddiv |
|- / = ( /r ` CCfld ) |
| 33 |
6 32 22 27
|
subrgdv |
|- ( ( R e. ( SubRing ` CCfld ) /\ x e. R /\ y e. ( Unit ` ( CCfld |`s R ) ) ) -> ( x / y ) = ( x ( /r ` ( CCfld |`s R ) ) y ) ) |
| 34 |
30 31 26 33
|
syl3anc |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ( x / y ) = ( x ( /r ` ( CCfld |`s R ) ) y ) ) |
| 35 |
29 34 8
|
3eltr4d |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ( x / y ) e. R ) |
| 36 |
|
eleq1 |
|- ( z = ( x / y ) -> ( z e. R <-> ( x / y ) e. R ) ) |
| 37 |
35 36
|
syl5ibrcom |
|- ( ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) /\ ( x e. ZZ /\ y e. NN ) ) -> ( z = ( x / y ) -> z e. R ) ) |
| 38 |
37
|
rexlimdvva |
|- ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) -> ( E. x e. ZZ E. y e. NN z = ( x / y ) -> z e. R ) ) |
| 39 |
1 38
|
biimtrid |
|- ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) -> ( z e. QQ -> z e. R ) ) |
| 40 |
39
|
ssrdv |
|- ( ( R e. ( SubRing ` CCfld ) /\ ( CCfld |`s R ) e. DivRing ) -> QQ C_ R ) |