| Step |
Hyp |
Ref |
Expression |
| 1 |
|
elq |
⊢ ( 𝑧 ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝑧 = ( 𝑥 / 𝑦 ) ) |
| 2 |
|
drngring |
⊢ ( ( ℂfld ↾s 𝑅 ) ∈ DivRing → ( ℂfld ↾s 𝑅 ) ∈ Ring ) |
| 3 |
2
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( ℂfld ↾s 𝑅 ) ∈ Ring ) |
| 4 |
|
zsssubrg |
⊢ ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → ℤ ⊆ 𝑅 ) |
| 5 |
4
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ℤ ⊆ 𝑅 ) |
| 6 |
|
eqid |
⊢ ( ℂfld ↾s 𝑅 ) = ( ℂfld ↾s 𝑅 ) |
| 7 |
6
|
subrgbas |
⊢ ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → 𝑅 = ( Base ‘ ( ℂfld ↾s 𝑅 ) ) ) |
| 8 |
7
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑅 = ( Base ‘ ( ℂfld ↾s 𝑅 ) ) ) |
| 9 |
5 8
|
sseqtrd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ℤ ⊆ ( Base ‘ ( ℂfld ↾s 𝑅 ) ) ) |
| 10 |
|
simprl |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑥 ∈ ℤ ) |
| 11 |
9 10
|
sseldd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑥 ∈ ( Base ‘ ( ℂfld ↾s 𝑅 ) ) ) |
| 12 |
|
nnz |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ ) |
| 13 |
12
|
ad2antll |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑦 ∈ ℤ ) |
| 14 |
9 13
|
sseldd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑅 ) ) ) |
| 15 |
|
nnne0 |
⊢ ( 𝑦 ∈ ℕ → 𝑦 ≠ 0 ) |
| 16 |
15
|
ad2antll |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑦 ≠ 0 ) |
| 17 |
|
cnfld0 |
⊢ 0 = ( 0g ‘ ℂfld ) |
| 18 |
6 17
|
subrg0 |
⊢ ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → 0 = ( 0g ‘ ( ℂfld ↾s 𝑅 ) ) ) |
| 19 |
18
|
ad2antrr |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 0 = ( 0g ‘ ( ℂfld ↾s 𝑅 ) ) ) |
| 20 |
16 19
|
neeqtrd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑦 ≠ ( 0g ‘ ( ℂfld ↾s 𝑅 ) ) ) |
| 21 |
|
eqid |
⊢ ( Base ‘ ( ℂfld ↾s 𝑅 ) ) = ( Base ‘ ( ℂfld ↾s 𝑅 ) ) |
| 22 |
|
eqid |
⊢ ( Unit ‘ ( ℂfld ↾s 𝑅 ) ) = ( Unit ‘ ( ℂfld ↾s 𝑅 ) ) |
| 23 |
|
eqid |
⊢ ( 0g ‘ ( ℂfld ↾s 𝑅 ) ) = ( 0g ‘ ( ℂfld ↾s 𝑅 ) ) |
| 24 |
21 22 23
|
drngunit |
⊢ ( ( ℂfld ↾s 𝑅 ) ∈ DivRing → ( 𝑦 ∈ ( Unit ‘ ( ℂfld ↾s 𝑅 ) ) ↔ ( 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑅 ) ) ∧ 𝑦 ≠ ( 0g ‘ ( ℂfld ↾s 𝑅 ) ) ) ) ) |
| 25 |
24
|
ad2antlr |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑦 ∈ ( Unit ‘ ( ℂfld ↾s 𝑅 ) ) ↔ ( 𝑦 ∈ ( Base ‘ ( ℂfld ↾s 𝑅 ) ) ∧ 𝑦 ≠ ( 0g ‘ ( ℂfld ↾s 𝑅 ) ) ) ) ) |
| 26 |
14 20 25
|
mpbir2and |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑦 ∈ ( Unit ‘ ( ℂfld ↾s 𝑅 ) ) ) |
| 27 |
|
eqid |
⊢ ( /r ‘ ( ℂfld ↾s 𝑅 ) ) = ( /r ‘ ( ℂfld ↾s 𝑅 ) ) |
| 28 |
21 22 27
|
dvrcl |
⊢ ( ( ( ℂfld ↾s 𝑅 ) ∈ Ring ∧ 𝑥 ∈ ( Base ‘ ( ℂfld ↾s 𝑅 ) ) ∧ 𝑦 ∈ ( Unit ‘ ( ℂfld ↾s 𝑅 ) ) ) → ( 𝑥 ( /r ‘ ( ℂfld ↾s 𝑅 ) ) 𝑦 ) ∈ ( Base ‘ ( ℂfld ↾s 𝑅 ) ) ) |
| 29 |
3 11 26 28
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑥 ( /r ‘ ( ℂfld ↾s 𝑅 ) ) 𝑦 ) ∈ ( Base ‘ ( ℂfld ↾s 𝑅 ) ) ) |
| 30 |
|
simpll |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑅 ∈ ( SubRing ‘ ℂfld ) ) |
| 31 |
5 10
|
sseldd |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑥 ∈ 𝑅 ) |
| 32 |
|
cnflddiv |
⊢ / = ( /r ‘ ℂfld ) |
| 33 |
6 32 22 27
|
subrgdv |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥 ∈ 𝑅 ∧ 𝑦 ∈ ( Unit ‘ ( ℂfld ↾s 𝑅 ) ) ) → ( 𝑥 / 𝑦 ) = ( 𝑥 ( /r ‘ ( ℂfld ↾s 𝑅 ) ) 𝑦 ) ) |
| 34 |
30 31 26 33
|
syl3anc |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑥 / 𝑦 ) = ( 𝑥 ( /r ‘ ( ℂfld ↾s 𝑅 ) ) 𝑦 ) ) |
| 35 |
29 34 8
|
3eltr4d |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑥 / 𝑦 ) ∈ 𝑅 ) |
| 36 |
|
eleq1 |
⊢ ( 𝑧 = ( 𝑥 / 𝑦 ) → ( 𝑧 ∈ 𝑅 ↔ ( 𝑥 / 𝑦 ) ∈ 𝑅 ) ) |
| 37 |
35 36
|
syl5ibrcom |
⊢ ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑧 = ( 𝑥 / 𝑦 ) → 𝑧 ∈ 𝑅 ) ) |
| 38 |
37
|
rexlimdvva |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝑧 = ( 𝑥 / 𝑦 ) → 𝑧 ∈ 𝑅 ) ) |
| 39 |
1 38
|
biimtrid |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) → ( 𝑧 ∈ ℚ → 𝑧 ∈ 𝑅 ) ) |
| 40 |
39
|
ssrdv |
⊢ ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂfld ↾s 𝑅 ) ∈ DivRing ) → ℚ ⊆ 𝑅 ) |