Metamath Proof Explorer


Theorem qsssubdrg

Description: The rational numbers are a subset of any subfield of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion qsssubdrg ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝑅 ) ∈ DivRing ) → ℚ ⊆ 𝑅 )

Proof

Step Hyp Ref Expression
1 elq ( 𝑧 ∈ ℚ ↔ ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝑧 = ( 𝑥 / 𝑦 ) )
2 drngring ( ( ℂflds 𝑅 ) ∈ DivRing → ( ℂflds 𝑅 ) ∈ Ring )
3 2 ad2antlr ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( ℂflds 𝑅 ) ∈ Ring )
4 zsssubrg ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → ℤ ⊆ 𝑅 )
5 4 ad2antrr ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ℤ ⊆ 𝑅 )
6 eqid ( ℂflds 𝑅 ) = ( ℂflds 𝑅 )
7 6 subrgbas ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → 𝑅 = ( Base ‘ ( ℂflds 𝑅 ) ) )
8 7 ad2antrr ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑅 = ( Base ‘ ( ℂflds 𝑅 ) ) )
9 5 8 sseqtrd ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ℤ ⊆ ( Base ‘ ( ℂflds 𝑅 ) ) )
10 simprl ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑥 ∈ ℤ )
11 9 10 sseldd ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑥 ∈ ( Base ‘ ( ℂflds 𝑅 ) ) )
12 nnz ( 𝑦 ∈ ℕ → 𝑦 ∈ ℤ )
13 12 ad2antll ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑦 ∈ ℤ )
14 9 13 sseldd ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑦 ∈ ( Base ‘ ( ℂflds 𝑅 ) ) )
15 nnne0 ( 𝑦 ∈ ℕ → 𝑦 ≠ 0 )
16 15 ad2antll ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑦 ≠ 0 )
17 cnfld0 0 = ( 0g ‘ ℂfld )
18 6 17 subrg0 ( 𝑅 ∈ ( SubRing ‘ ℂfld ) → 0 = ( 0g ‘ ( ℂflds 𝑅 ) ) )
19 18 ad2antrr ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 0 = ( 0g ‘ ( ℂflds 𝑅 ) ) )
20 16 19 neeqtrd ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑦 ≠ ( 0g ‘ ( ℂflds 𝑅 ) ) )
21 eqid ( Base ‘ ( ℂflds 𝑅 ) ) = ( Base ‘ ( ℂflds 𝑅 ) )
22 eqid ( Unit ‘ ( ℂflds 𝑅 ) ) = ( Unit ‘ ( ℂflds 𝑅 ) )
23 eqid ( 0g ‘ ( ℂflds 𝑅 ) ) = ( 0g ‘ ( ℂflds 𝑅 ) )
24 21 22 23 drngunit ( ( ℂflds 𝑅 ) ∈ DivRing → ( 𝑦 ∈ ( Unit ‘ ( ℂflds 𝑅 ) ) ↔ ( 𝑦 ∈ ( Base ‘ ( ℂflds 𝑅 ) ) ∧ 𝑦 ≠ ( 0g ‘ ( ℂflds 𝑅 ) ) ) ) )
25 24 ad2antlr ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑦 ∈ ( Unit ‘ ( ℂflds 𝑅 ) ) ↔ ( 𝑦 ∈ ( Base ‘ ( ℂflds 𝑅 ) ) ∧ 𝑦 ≠ ( 0g ‘ ( ℂflds 𝑅 ) ) ) ) )
26 14 20 25 mpbir2and ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑦 ∈ ( Unit ‘ ( ℂflds 𝑅 ) ) )
27 eqid ( /r ‘ ( ℂflds 𝑅 ) ) = ( /r ‘ ( ℂflds 𝑅 ) )
28 21 22 27 dvrcl ( ( ( ℂflds 𝑅 ) ∈ Ring ∧ 𝑥 ∈ ( Base ‘ ( ℂflds 𝑅 ) ) ∧ 𝑦 ∈ ( Unit ‘ ( ℂflds 𝑅 ) ) ) → ( 𝑥 ( /r ‘ ( ℂflds 𝑅 ) ) 𝑦 ) ∈ ( Base ‘ ( ℂflds 𝑅 ) ) )
29 3 11 26 28 syl3anc ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑥 ( /r ‘ ( ℂflds 𝑅 ) ) 𝑦 ) ∈ ( Base ‘ ( ℂflds 𝑅 ) ) )
30 simpll ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑅 ∈ ( SubRing ‘ ℂfld ) )
31 5 10 sseldd ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → 𝑥𝑅 )
32 cnflddiv / = ( /r ‘ ℂfld )
33 6 32 22 27 subrgdv ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ 𝑥𝑅𝑦 ∈ ( Unit ‘ ( ℂflds 𝑅 ) ) ) → ( 𝑥 / 𝑦 ) = ( 𝑥 ( /r ‘ ( ℂflds 𝑅 ) ) 𝑦 ) )
34 30 31 26 33 syl3anc ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑥 / 𝑦 ) = ( 𝑥 ( /r ‘ ( ℂflds 𝑅 ) ) 𝑦 ) )
35 29 34 8 3eltr4d ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑥 / 𝑦 ) ∈ 𝑅 )
36 eleq1 ( 𝑧 = ( 𝑥 / 𝑦 ) → ( 𝑧𝑅 ↔ ( 𝑥 / 𝑦 ) ∈ 𝑅 ) )
37 35 36 syl5ibrcom ( ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝑅 ) ∈ DivRing ) ∧ ( 𝑥 ∈ ℤ ∧ 𝑦 ∈ ℕ ) ) → ( 𝑧 = ( 𝑥 / 𝑦 ) → 𝑧𝑅 ) )
38 37 rexlimdvva ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝑅 ) ∈ DivRing ) → ( ∃ 𝑥 ∈ ℤ ∃ 𝑦 ∈ ℕ 𝑧 = ( 𝑥 / 𝑦 ) → 𝑧𝑅 ) )
39 1 38 syl5bi ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝑅 ) ∈ DivRing ) → ( 𝑧 ∈ ℚ → 𝑧𝑅 ) )
40 39 ssrdv ( ( 𝑅 ∈ ( SubRing ‘ ℂfld ) ∧ ( ℂflds 𝑅 ) ∈ DivRing ) → ℚ ⊆ 𝑅 )