| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							df-q | 
							⊢ ℚ  =  (  /   “  ( ℤ  ×  ℕ ) )  | 
						
						
							| 2 | 
							
								1
							 | 
							eleq2i | 
							⊢ ( 𝐴  ∈  ℚ  ↔  𝐴  ∈  (  /   “  ( ℤ  ×  ℕ ) ) )  | 
						
						
							| 3 | 
							
								
							 | 
							df-div | 
							⊢  /   =  ( 𝑥  ∈  ℂ ,  𝑦  ∈  ( ℂ  ∖  { 0 } )  ↦  ( ℩ 𝑧  ∈  ℂ ( 𝑦  ·  𝑧 )  =  𝑥 ) )  | 
						
						
							| 4 | 
							
								
							 | 
							riotaex | 
							⊢ ( ℩ 𝑧  ∈  ℂ ( 𝑦  ·  𝑧 )  =  𝑥 )  ∈  V  | 
						
						
							| 5 | 
							
								3 4
							 | 
							fnmpoi | 
							⊢  /   Fn  ( ℂ  ×  ( ℂ  ∖  { 0 } ) )  | 
						
						
							| 6 | 
							
								
							 | 
							zsscn | 
							⊢ ℤ  ⊆  ℂ  | 
						
						
							| 7 | 
							
								
							 | 
							nncn | 
							⊢ ( 𝑥  ∈  ℕ  →  𝑥  ∈  ℂ )  | 
						
						
							| 8 | 
							
								
							 | 
							nnne0 | 
							⊢ ( 𝑥  ∈  ℕ  →  𝑥  ≠  0 )  | 
						
						
							| 9 | 
							
								
							 | 
							eldifsn | 
							⊢ ( 𝑥  ∈  ( ℂ  ∖  { 0 } )  ↔  ( 𝑥  ∈  ℂ  ∧  𝑥  ≠  0 ) )  | 
						
						
							| 10 | 
							
								7 8 9
							 | 
							sylanbrc | 
							⊢ ( 𝑥  ∈  ℕ  →  𝑥  ∈  ( ℂ  ∖  { 0 } ) )  | 
						
						
							| 11 | 
							
								10
							 | 
							ssriv | 
							⊢ ℕ  ⊆  ( ℂ  ∖  { 0 } )  | 
						
						
							| 12 | 
							
								
							 | 
							xpss12 | 
							⊢ ( ( ℤ  ⊆  ℂ  ∧  ℕ  ⊆  ( ℂ  ∖  { 0 } ) )  →  ( ℤ  ×  ℕ )  ⊆  ( ℂ  ×  ( ℂ  ∖  { 0 } ) ) )  | 
						
						
							| 13 | 
							
								6 11 12
							 | 
							mp2an | 
							⊢ ( ℤ  ×  ℕ )  ⊆  ( ℂ  ×  ( ℂ  ∖  { 0 } ) )  | 
						
						
							| 14 | 
							
								
							 | 
							ovelimab | 
							⊢ ( (  /   Fn  ( ℂ  ×  ( ℂ  ∖  { 0 } ) )  ∧  ( ℤ  ×  ℕ )  ⊆  ( ℂ  ×  ( ℂ  ∖  { 0 } ) ) )  →  ( 𝐴  ∈  (  /   “  ( ℤ  ×  ℕ ) )  ↔  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 ) ) )  | 
						
						
							| 15 | 
							
								5 13 14
							 | 
							mp2an | 
							⊢ ( 𝐴  ∈  (  /   “  ( ℤ  ×  ℕ ) )  ↔  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 ) )  | 
						
						
							| 16 | 
							
								2 15
							 | 
							bitri | 
							⊢ ( 𝐴  ∈  ℚ  ↔  ∃ 𝑥  ∈  ℤ ∃ 𝑦  ∈  ℕ 𝐴  =  ( 𝑥  /  𝑦 ) )  |