| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							fvelimab | 
							⊢ ( ( 𝐹  Fn  𝐴  ∧  ( 𝐵  ×  𝐶 )  ⊆  𝐴 )  →  ( 𝐷  ∈  ( 𝐹  “  ( 𝐵  ×  𝐶 ) )  ↔  ∃ 𝑧  ∈  ( 𝐵  ×  𝐶 ) ( 𝐹 ‘ 𝑧 )  =  𝐷 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							fveq2 | 
							⊢ ( 𝑧  =  〈 𝑥 ,  𝑦 〉  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝐹 ‘ 〈 𝑥 ,  𝑦 〉 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							df-ov | 
							⊢ ( 𝑥 𝐹 𝑦 )  =  ( 𝐹 ‘ 〈 𝑥 ,  𝑦 〉 )  | 
						
						
							| 4 | 
							
								2 3
							 | 
							eqtr4di | 
							⊢ ( 𝑧  =  〈 𝑥 ,  𝑦 〉  →  ( 𝐹 ‘ 𝑧 )  =  ( 𝑥 𝐹 𝑦 ) )  | 
						
						
							| 5 | 
							
								4
							 | 
							eqeq1d | 
							⊢ ( 𝑧  =  〈 𝑥 ,  𝑦 〉  →  ( ( 𝐹 ‘ 𝑧 )  =  𝐷  ↔  ( 𝑥 𝐹 𝑦 )  =  𝐷 ) )  | 
						
						
							| 6 | 
							
								
							 | 
							eqcom | 
							⊢ ( ( 𝑥 𝐹 𝑦 )  =  𝐷  ↔  𝐷  =  ( 𝑥 𝐹 𝑦 ) )  | 
						
						
							| 7 | 
							
								5 6
							 | 
							bitrdi | 
							⊢ ( 𝑧  =  〈 𝑥 ,  𝑦 〉  →  ( ( 𝐹 ‘ 𝑧 )  =  𝐷  ↔  𝐷  =  ( 𝑥 𝐹 𝑦 ) ) )  | 
						
						
							| 8 | 
							
								7
							 | 
							rexxp | 
							⊢ ( ∃ 𝑧  ∈  ( 𝐵  ×  𝐶 ) ( 𝐹 ‘ 𝑧 )  =  𝐷  ↔  ∃ 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐶 𝐷  =  ( 𝑥 𝐹 𝑦 ) )  | 
						
						
							| 9 | 
							
								1 8
							 | 
							bitrdi | 
							⊢ ( ( 𝐹  Fn  𝐴  ∧  ( 𝐵  ×  𝐶 )  ⊆  𝐴 )  →  ( 𝐷  ∈  ( 𝐹  “  ( 𝐵  ×  𝐶 ) )  ↔  ∃ 𝑥  ∈  𝐵 ∃ 𝑦  ∈  𝐶 𝐷  =  ( 𝑥 𝐹 𝑦 ) ) )  |