Metamath Proof Explorer


Theorem ovelimab

Description: Operation value in an image. (Contributed by Mario Carneiro, 23-Dec-2013) (Revised by Mario Carneiro, 29-Jan-2014)

Ref Expression
Assertion ovelimab FFnAB×CADFB×CxByCD=xFy

Proof

Step Hyp Ref Expression
1 fvelimab FFnAB×CADFB×CzB×CFz=D
2 fveq2 z=xyFz=Fxy
3 df-ov xFy=Fxy
4 2 3 eqtr4di z=xyFz=xFy
5 4 eqeq1d z=xyFz=DxFy=D
6 eqcom xFy=DD=xFy
7 5 6 bitrdi z=xyFz=DD=xFy
8 7 rexxp zB×CFz=DxByCD=xFy
9 1 8 bitrdi FFnAB×CADFB×CxByCD=xFy