Metamath Proof Explorer


Theorem ovima0

Description: An operation value is a member of the image plus null. (Contributed by Thierry Arnoux, 25-Jun-2019)

Ref Expression
Assertion ovima0 XAYBXRYRA×B

Proof

Step Hyp Ref Expression
1 simpr XAYBXRY=XRY=
2 ssun2 RA×B
3 0ex V
4 3 snid
5 2 4 sselii RA×B
6 1 5 eqeltrdi XAYBXRY=XRYRA×B
7 ssun1 RA×BRA×B
8 df-ov XRY=RXY
9 opelxpi XAYBXYA×B
10 8 eqeq1i XRY=RXY=
11 10 notbii ¬XRY=¬RXY=
12 11 biimpi ¬XRY=¬RXY=
13 eliman0 XYA×B¬RXY=RXYRA×B
14 9 12 13 syl2an XAYB¬XRY=RXYRA×B
15 8 14 eqeltrid XAYB¬XRY=XRYRA×B
16 7 15 sselid XAYB¬XRY=XRYRA×B
17 6 16 pm2.61dan XAYBXRYRA×B