Metamath Proof Explorer


Theorem eliman0

Description: A nonempty function value is an element of the image of the function. (Contributed by Thierry Arnoux, 25-Jun-2019)

Ref Expression
Assertion eliman0 AB¬FA=FAFB

Proof

Step Hyp Ref Expression
1 fvbr0 AFFAFA=
2 orcom AFFAFA=FA=AFFA
3 1 2 mpbi FA=AFFA
4 3 ori ¬FA=AFFA
5 breq1 x=AxFFAAFFA
6 5 rspcev ABAFFAxBxFFA
7 4 6 sylan2 AB¬FA=xBxFFA
8 fvex FAV
9 8 elima FAFBxBxFFA
10 7 9 sylibr AB¬FA=FAFB