| Step | Hyp | Ref | Expression | 
						
							| 1 |  | fvbr0 | ⊢ ( 𝐴 𝐹 ( 𝐹 ‘ 𝐴 )  ∨  ( 𝐹 ‘ 𝐴 )  =  ∅ ) | 
						
							| 2 |  | orcom | ⊢ ( ( 𝐴 𝐹 ( 𝐹 ‘ 𝐴 )  ∨  ( 𝐹 ‘ 𝐴 )  =  ∅ )  ↔  ( ( 𝐹 ‘ 𝐴 )  =  ∅  ∨  𝐴 𝐹 ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 3 | 1 2 | mpbi | ⊢ ( ( 𝐹 ‘ 𝐴 )  =  ∅  ∨  𝐴 𝐹 ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 4 | 3 | ori | ⊢ ( ¬  ( 𝐹 ‘ 𝐴 )  =  ∅  →  𝐴 𝐹 ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 5 |  | breq1 | ⊢ ( 𝑥  =  𝐴  →  ( 𝑥 𝐹 ( 𝐹 ‘ 𝐴 )  ↔  𝐴 𝐹 ( 𝐹 ‘ 𝐴 ) ) ) | 
						
							| 6 | 5 | rspcev | ⊢ ( ( 𝐴  ∈  𝐵  ∧  𝐴 𝐹 ( 𝐹 ‘ 𝐴 ) )  →  ∃ 𝑥  ∈  𝐵 𝑥 𝐹 ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 7 | 4 6 | sylan2 | ⊢ ( ( 𝐴  ∈  𝐵  ∧  ¬  ( 𝐹 ‘ 𝐴 )  =  ∅ )  →  ∃ 𝑥  ∈  𝐵 𝑥 𝐹 ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 8 |  | fvex | ⊢ ( 𝐹 ‘ 𝐴 )  ∈  V | 
						
							| 9 | 8 | elima | ⊢ ( ( 𝐹 ‘ 𝐴 )  ∈  ( 𝐹  “  𝐵 )  ↔  ∃ 𝑥  ∈  𝐵 𝑥 𝐹 ( 𝐹 ‘ 𝐴 ) ) | 
						
							| 10 | 7 9 | sylibr | ⊢ ( ( 𝐴  ∈  𝐵  ∧  ¬  ( 𝐹 ‘ 𝐴 )  =  ∅ )  →  ( 𝐹 ‘ 𝐴 )  ∈  ( 𝐹  “  𝐵 ) ) |