Metamath Proof Explorer


Theorem rexxp

Description: Existential quantification restricted to a Cartesian product is equivalent to a double restricted quantification. (Contributed by NM, 11-Nov-1995) (Revised by Mario Carneiro, 14-Feb-2015)

Ref Expression
Hypothesis ralxp.1 x=yzφψ
Assertion rexxp xA×BφyAzBψ

Proof

Step Hyp Ref Expression
1 ralxp.1 x=yzφψ
2 iunxpconst yAy×B=A×B
3 2 rexeqi xyAy×BφxA×Bφ
4 1 rexiunxp xyAy×BφyAzBψ
5 3 4 bitr3i xA×BφyAzBψ