Metamath Proof Explorer


Theorem iunxpconst

Description: Membership in a union of Cartesian products when the second factor is constant. (Contributed by Mario Carneiro, 29-Dec-2014)

Ref Expression
Assertion iunxpconst xAx×B=A×B

Proof

Step Hyp Ref Expression
1 xpiundir xAx×B=xAx×B
2 iunid xAx=A
3 2 xpeq1i xAx×B=A×B
4 1 3 eqtr3i xAx×B=A×B