Metamath Proof Explorer


Theorem fvelimab

Description: Function value in an image. (Contributed by NM, 20-Jan-2007) (Proof shortened by Andrew Salmon, 22-Oct-2011) (Revised by David Abernethy, 17-Dec-2011)

Ref Expression
Assertion fvelimab F Fn A B A C F B x B F x = C

Proof

Step Hyp Ref Expression
1 elex C F B C V
2 1 anim2i F Fn A B A C F B F Fn A B A C V
3 fvex F x V
4 eleq1 F x = C F x V C V
5 3 4 mpbii F x = C C V
6 5 rexlimivw x B F x = C C V
7 6 anim2i F Fn A B A x B F x = C F Fn A B A C V
8 eleq1 y = C y F B C F B
9 eqeq2 y = C F x = y F x = C
10 9 rexbidv y = C x B F x = y x B F x = C
11 8 10 bibi12d y = C y F B x B F x = y C F B x B F x = C
12 11 imbi2d y = C F Fn A B A y F B x B F x = y F Fn A B A C F B x B F x = C
13 fnfun F Fn A Fun F
14 fndm F Fn A dom F = A
15 14 sseq2d F Fn A B dom F B A
16 15 biimpar F Fn A B A B dom F
17 dfimafn Fun F B dom F F B = y | x B F x = y
18 13 16 17 syl2an2r F Fn A B A F B = y | x B F x = y
19 18 abeq2d F Fn A B A y F B x B F x = y
20 12 19 vtoclg C V F Fn A B A C F B x B F x = C
21 20 impcom F Fn A B A C V C F B x B F x = C
22 2 7 21 pm5.21nd F Fn A B A C F B x B F x = C