| Step | 
						Hyp | 
						Ref | 
						Expression | 
					
						
							| 1 | 
							
								
							 | 
							elq | 
							⊢ ( 𝐴  ∈  ℚ  ↔  ∃ 𝑦  ∈  ℤ ∃ 𝑥  ∈  ℕ 𝐴  =  ( 𝑦  /  𝑥 ) )  | 
						
						
							| 2 | 
							
								
							 | 
							rexcom | 
							⊢ ( ∃ 𝑦  ∈  ℤ ∃ 𝑥  ∈  ℕ 𝐴  =  ( 𝑦  /  𝑥 )  ↔  ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℤ 𝐴  =  ( 𝑦  /  𝑥 ) )  | 
						
						
							| 3 | 
							
								
							 | 
							zcn | 
							⊢ ( 𝑦  ∈  ℤ  →  𝑦  ∈  ℂ )  | 
						
						
							| 4 | 
							
								3
							 | 
							adantl | 
							⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℤ )  →  𝑦  ∈  ℂ )  | 
						
						
							| 5 | 
							
								
							 | 
							nncn | 
							⊢ ( 𝑥  ∈  ℕ  →  𝑥  ∈  ℂ )  | 
						
						
							| 6 | 
							
								5
							 | 
							adantr | 
							⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℤ )  →  𝑥  ∈  ℂ )  | 
						
						
							| 7 | 
							
								
							 | 
							nnne0 | 
							⊢ ( 𝑥  ∈  ℕ  →  𝑥  ≠  0 )  | 
						
						
							| 8 | 
							
								7
							 | 
							adantr | 
							⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℤ )  →  𝑥  ≠  0 )  | 
						
						
							| 9 | 
							
								4 6 8
							 | 
							divcan1d | 
							⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℤ )  →  ( ( 𝑦  /  𝑥 )  ·  𝑥 )  =  𝑦 )  | 
						
						
							| 10 | 
							
								
							 | 
							simpr | 
							⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℤ )  →  𝑦  ∈  ℤ )  | 
						
						
							| 11 | 
							
								9 10
							 | 
							eqeltrd | 
							⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℤ )  →  ( ( 𝑦  /  𝑥 )  ·  𝑥 )  ∈  ℤ )  | 
						
						
							| 12 | 
							
								
							 | 
							oveq1 | 
							⊢ ( 𝐴  =  ( 𝑦  /  𝑥 )  →  ( 𝐴  ·  𝑥 )  =  ( ( 𝑦  /  𝑥 )  ·  𝑥 ) )  | 
						
						
							| 13 | 
							
								12
							 | 
							eleq1d | 
							⊢ ( 𝐴  =  ( 𝑦  /  𝑥 )  →  ( ( 𝐴  ·  𝑥 )  ∈  ℤ  ↔  ( ( 𝑦  /  𝑥 )  ·  𝑥 )  ∈  ℤ ) )  | 
						
						
							| 14 | 
							
								11 13
							 | 
							syl5ibrcom | 
							⊢ ( ( 𝑥  ∈  ℕ  ∧  𝑦  ∈  ℤ )  →  ( 𝐴  =  ( 𝑦  /  𝑥 )  →  ( 𝐴  ·  𝑥 )  ∈  ℤ ) )  | 
						
						
							| 15 | 
							
								14
							 | 
							rexlimdva | 
							⊢ ( 𝑥  ∈  ℕ  →  ( ∃ 𝑦  ∈  ℤ 𝐴  =  ( 𝑦  /  𝑥 )  →  ( 𝐴  ·  𝑥 )  ∈  ℤ ) )  | 
						
						
							| 16 | 
							
								15
							 | 
							reximia | 
							⊢ ( ∃ 𝑥  ∈  ℕ ∃ 𝑦  ∈  ℤ 𝐴  =  ( 𝑦  /  𝑥 )  →  ∃ 𝑥  ∈  ℕ ( 𝐴  ·  𝑥 )  ∈  ℤ )  | 
						
						
							| 17 | 
							
								2 16
							 | 
							sylbi | 
							⊢ ( ∃ 𝑦  ∈  ℤ ∃ 𝑥  ∈  ℕ 𝐴  =  ( 𝑦  /  𝑥 )  →  ∃ 𝑥  ∈  ℕ ( 𝐴  ·  𝑥 )  ∈  ℤ )  | 
						
						
							| 18 | 
							
								1 17
							 | 
							sylbi | 
							⊢ ( 𝐴  ∈  ℚ  →  ∃ 𝑥  ∈  ℕ ( 𝐴  ·  𝑥 )  ∈  ℤ )  |