Metamath Proof Explorer


Theorem qmulz

Description: If A is rational, then some integer multiple of it is an integer. (Contributed by NM, 7-Nov-2008) (Revised by Mario Carneiro, 22-Jul-2014)

Ref Expression
Assertion qmulz AxAx

Proof

Step Hyp Ref Expression
1 elq AyxA=yx
2 rexcom yxA=yxxyA=yx
3 zcn yy
4 3 adantl xyy
5 nncn xx
6 5 adantr xyx
7 nnne0 xx0
8 7 adantr xyx0
9 4 6 8 divcan1d xyyxx=y
10 simpr xyy
11 9 10 eqeltrd xyyxx
12 oveq1 A=yxAx=yxx
13 12 eleq1d A=yxAxyxx
14 11 13 syl5ibrcom xyA=yxAx
15 14 rexlimdva xyA=yxAx
16 15 reximia xyA=yxxAx
17 2 16 sylbi yxA=yxxAx
18 1 17 sylbi AxAx