| Step | Hyp | Ref | Expression | 
						
							| 1 |  | elq |  | 
						
							| 2 |  | drngring |  | 
						
							| 3 | 2 | ad2antlr |  | 
						
							| 4 |  | zsssubrg |  | 
						
							| 5 | 4 | ad2antrr |  | 
						
							| 6 |  | eqid |  | 
						
							| 7 | 6 | subrgbas |  | 
						
							| 8 | 7 | ad2antrr |  | 
						
							| 9 | 5 8 | sseqtrd |  | 
						
							| 10 |  | simprl |  | 
						
							| 11 | 9 10 | sseldd |  | 
						
							| 12 |  | nnz |  | 
						
							| 13 | 12 | ad2antll |  | 
						
							| 14 | 9 13 | sseldd |  | 
						
							| 15 |  | nnne0 |  | 
						
							| 16 | 15 | ad2antll |  | 
						
							| 17 |  | cnfld0 |  | 
						
							| 18 | 6 17 | subrg0 |  | 
						
							| 19 | 18 | ad2antrr |  | 
						
							| 20 | 16 19 | neeqtrd |  | 
						
							| 21 |  | eqid |  | 
						
							| 22 |  | eqid |  | 
						
							| 23 |  | eqid |  | 
						
							| 24 | 21 22 23 | drngunit |  | 
						
							| 25 | 24 | ad2antlr |  | 
						
							| 26 | 14 20 25 | mpbir2and |  | 
						
							| 27 |  | eqid |  | 
						
							| 28 | 21 22 27 | dvrcl |  | 
						
							| 29 | 3 11 26 28 | syl3anc |  | 
						
							| 30 |  | simpll |  | 
						
							| 31 | 5 10 | sseldd |  | 
						
							| 32 |  | cnflddiv |  | 
						
							| 33 | 6 32 22 27 | subrgdv |  | 
						
							| 34 | 30 31 26 33 | syl3anc |  | 
						
							| 35 | 29 34 8 | 3eltr4d |  | 
						
							| 36 |  | eleq1 |  | 
						
							| 37 | 35 36 | syl5ibrcom |  | 
						
							| 38 | 37 | rexlimdvva |  | 
						
							| 39 | 1 38 | biimtrid |  | 
						
							| 40 | 39 | ssrdv |  |