Metamath Proof Explorer


Theorem subrgdv

Description: A subring always has the same division function, for elements that are invertible. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses subrgdv.1 S=R𝑠A
subrgdv.2 ×˙=/rR
subrgdv.3 U=UnitS
subrgdv.4 E=/rS
Assertion subrgdv ASubRingRXAYUX×˙Y=XEY

Proof

Step Hyp Ref Expression
1 subrgdv.1 S=R𝑠A
2 subrgdv.2 ×˙=/rR
3 subrgdv.3 U=UnitS
4 subrgdv.4 E=/rS
5 eqid invrR=invrR
6 eqid invrS=invrS
7 1 5 3 6 subrginv ASubRingRYUinvrRY=invrSY
8 7 3adant2 ASubRingRXAYUinvrRY=invrSY
9 8 oveq2d ASubRingRXAYUXRinvrRY=XRinvrSY
10 eqid R=R
11 1 10 ressmulr ASubRingRR=S
12 11 3ad2ant1 ASubRingRXAYUR=S
13 12 oveqd ASubRingRXAYUXRinvrSY=XSinvrSY
14 9 13 eqtrd ASubRingRXAYUXRinvrRY=XSinvrSY
15 eqid BaseR=BaseR
16 15 subrgss ASubRingRABaseR
17 16 3ad2ant1 ASubRingRXAYUABaseR
18 simp2 ASubRingRXAYUXA
19 17 18 sseldd ASubRingRXAYUXBaseR
20 eqid UnitR=UnitR
21 1 20 3 subrguss ASubRingRUUnitR
22 21 3ad2ant1 ASubRingRXAYUUUnitR
23 simp3 ASubRingRXAYUYU
24 22 23 sseldd ASubRingRXAYUYUnitR
25 15 10 20 5 2 dvrval XBaseRYUnitRX×˙Y=XRinvrRY
26 19 24 25 syl2anc ASubRingRXAYUX×˙Y=XRinvrRY
27 1 subrgbas ASubRingRA=BaseS
28 27 3ad2ant1 ASubRingRXAYUA=BaseS
29 18 28 eleqtrd ASubRingRXAYUXBaseS
30 eqid BaseS=BaseS
31 eqid S=S
32 30 31 3 6 4 dvrval XBaseSYUXEY=XSinvrSY
33 29 23 32 syl2anc ASubRingRXAYUXEY=XSinvrSY
34 14 26 33 3eqtr4d ASubRingRXAYUX×˙Y=XEY