Metamath Proof Explorer


Theorem subrguss

Description: A unit of a subring is a unit of the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014)

Ref Expression
Hypotheses subrguss.1 S=R𝑠A
subrguss.2 U=UnitR
subrguss.3 V=UnitS
Assertion subrguss ASubRingRVU

Proof

Step Hyp Ref Expression
1 subrguss.1 S=R𝑠A
2 subrguss.2 U=UnitR
3 subrguss.3 V=UnitS
4 simpr ASubRingRxVxV
5 eqid 1S=1S
6 eqid rS=rS
7 eqid opprS=opprS
8 eqid ropprS=ropprS
9 3 5 6 7 8 isunit xVxrS1SxropprS1S
10 4 9 sylib ASubRingRxVxrS1SxropprS1S
11 10 simpld ASubRingRxVxrS1S
12 eqid 1R=1R
13 1 12 subrg1 ASubRingR1R=1S
14 13 adantr ASubRingRxV1R=1S
15 11 14 breqtrrd ASubRingRxVxrS1R
16 eqid rR=rR
17 1 16 6 subrgdvds ASubRingRrSrR
18 17 adantr ASubRingRxVrSrR
19 18 ssbrd ASubRingRxVxrS1RxrR1R
20 15 19 mpd ASubRingRxVxrR1R
21 1 subrgbas ASubRingRA=BaseS
22 21 adantr ASubRingRxVA=BaseS
23 eqid BaseR=BaseR
24 23 subrgss ASubRingRABaseR
25 24 adantr ASubRingRxVABaseR
26 22 25 eqsstrrd ASubRingRxVBaseSBaseR
27 eqid BaseS=BaseS
28 27 3 unitcl xVxBaseS
29 28 adantl ASubRingRxVxBaseS
30 26 29 sseldd ASubRingRxVxBaseR
31 1 subrgring ASubRingRSRing
32 eqid invrS=invrS
33 3 32 27 ringinvcl SRingxVinvrSxBaseS
34 31 33 sylan ASubRingRxVinvrSxBaseS
35 26 34 sseldd ASubRingRxVinvrSxBaseR
36 eqid opprR=opprR
37 36 23 opprbas BaseR=BaseopprR
38 eqid ropprR=ropprR
39 eqid opprR=opprR
40 37 38 39 dvdsrmul xBaseRinvrSxBaseRxropprRinvrSxopprRx
41 30 35 40 syl2anc ASubRingRxVxropprRinvrSxopprRx
42 eqid R=R
43 23 42 36 39 opprmul invrSxopprRx=xRinvrSx
44 eqid S=S
45 3 32 44 5 unitrinv SRingxVxSinvrSx=1S
46 31 45 sylan ASubRingRxVxSinvrSx=1S
47 1 42 ressmulr ASubRingRR=S
48 47 adantr ASubRingRxVR=S
49 48 oveqd ASubRingRxVxRinvrSx=xSinvrSx
50 46 49 14 3eqtr4d ASubRingRxVxRinvrSx=1R
51 43 50 eqtrid ASubRingRxVinvrSxopprRx=1R
52 41 51 breqtrd ASubRingRxVxropprR1R
53 2 12 16 36 38 isunit xUxrR1RxropprR1R
54 20 52 53 sylanbrc ASubRingRxVxU
55 54 ex ASubRingRxVxU
56 55 ssrdv ASubRingRVU