Description: A unit of a subring is a unit of the parent ring. (Contributed by Mario Carneiro, 4-Dec-2014)
Ref | Expression | ||
---|---|---|---|
Hypotheses | subrguss.1 | |
|
subrguss.2 | |
||
subrguss.3 | |
||
Assertion | subrguss | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | subrguss.1 | |
|
2 | subrguss.2 | |
|
3 | subrguss.3 | |
|
4 | simpr | |
|
5 | eqid | |
|
6 | eqid | |
|
7 | eqid | |
|
8 | eqid | |
|
9 | 3 5 6 7 8 | isunit | |
10 | 4 9 | sylib | |
11 | 10 | simpld | |
12 | eqid | |
|
13 | 1 12 | subrg1 | |
14 | 13 | adantr | |
15 | 11 14 | breqtrrd | |
16 | eqid | |
|
17 | 1 16 6 | subrgdvds | |
18 | 17 | adantr | |
19 | 18 | ssbrd | |
20 | 15 19 | mpd | |
21 | 1 | subrgbas | |
22 | 21 | adantr | |
23 | eqid | |
|
24 | 23 | subrgss | |
25 | 24 | adantr | |
26 | 22 25 | eqsstrrd | |
27 | eqid | |
|
28 | 27 3 | unitcl | |
29 | 28 | adantl | |
30 | 26 29 | sseldd | |
31 | 1 | subrgring | |
32 | eqid | |
|
33 | 3 32 27 | ringinvcl | |
34 | 31 33 | sylan | |
35 | 26 34 | sseldd | |
36 | eqid | |
|
37 | 36 23 | opprbas | |
38 | eqid | |
|
39 | eqid | |
|
40 | 37 38 39 | dvdsrmul | |
41 | 30 35 40 | syl2anc | |
42 | eqid | |
|
43 | 23 42 36 39 | opprmul | |
44 | eqid | |
|
45 | 3 32 44 5 | unitrinv | |
46 | 31 45 | sylan | |
47 | 1 42 | ressmulr | |
48 | 47 | adantr | |
49 | 48 | oveqd | |
50 | 46 49 14 | 3eqtr4d | |
51 | 43 50 | eqtrid | |
52 | 41 51 | breqtrd | |
53 | 2 12 16 36 38 | isunit | |
54 | 20 52 53 | sylanbrc | |
55 | 54 | ex | |
56 | 55 | ssrdv | |