| Step |
Hyp |
Ref |
Expression |
| 1 |
|
subrguss.1 |
⊢ 𝑆 = ( 𝑅 ↾s 𝐴 ) |
| 2 |
|
subrguss.2 |
⊢ 𝑈 = ( Unit ‘ 𝑅 ) |
| 3 |
|
subrguss.3 |
⊢ 𝑉 = ( Unit ‘ 𝑆 ) |
| 4 |
|
simpr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ 𝑉 ) |
| 5 |
|
eqid |
⊢ ( 1r ‘ 𝑆 ) = ( 1r ‘ 𝑆 ) |
| 6 |
|
eqid |
⊢ ( ∥r ‘ 𝑆 ) = ( ∥r ‘ 𝑆 ) |
| 7 |
|
eqid |
⊢ ( oppr ‘ 𝑆 ) = ( oppr ‘ 𝑆 ) |
| 8 |
|
eqid |
⊢ ( ∥r ‘ ( oppr ‘ 𝑆 ) ) = ( ∥r ‘ ( oppr ‘ 𝑆 ) ) |
| 9 |
3 5 6 7 8
|
isunit |
⊢ ( 𝑥 ∈ 𝑉 ↔ ( 𝑥 ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑆 ) ) ( 1r ‘ 𝑆 ) ) ) |
| 10 |
4 9
|
sylib |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑆 ) ) ( 1r ‘ 𝑆 ) ) ) |
| 11 |
10
|
simpld |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑆 ) ) |
| 12 |
|
eqid |
⊢ ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑅 ) |
| 13 |
1 12
|
subrg1 |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) ) |
| 14 |
13
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( 1r ‘ 𝑅 ) = ( 1r ‘ 𝑆 ) ) |
| 15 |
11 14
|
breqtrrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) ) |
| 16 |
|
eqid |
⊢ ( ∥r ‘ 𝑅 ) = ( ∥r ‘ 𝑅 ) |
| 17 |
1 16 6
|
subrgdvds |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( ∥r ‘ 𝑆 ) ⊆ ( ∥r ‘ 𝑅 ) ) |
| 18 |
17
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( ∥r ‘ 𝑆 ) ⊆ ( ∥r ‘ 𝑅 ) ) |
| 19 |
18
|
ssbrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 ( ∥r ‘ 𝑆 ) ( 1r ‘ 𝑅 ) → 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) ) |
| 20 |
15 19
|
mpd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ) |
| 21 |
1
|
subrgbas |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 22 |
21
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝐴 = ( Base ‘ 𝑆 ) ) |
| 23 |
|
eqid |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ 𝑅 ) |
| 24 |
23
|
subrgss |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 25 |
24
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝐴 ⊆ ( Base ‘ 𝑅 ) ) |
| 26 |
22 25
|
eqsstrrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( Base ‘ 𝑆 ) ⊆ ( Base ‘ 𝑅 ) ) |
| 27 |
|
eqid |
⊢ ( Base ‘ 𝑆 ) = ( Base ‘ 𝑆 ) |
| 28 |
27 3
|
unitcl |
⊢ ( 𝑥 ∈ 𝑉 → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
| 29 |
28
|
adantl |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ ( Base ‘ 𝑆 ) ) |
| 30 |
26 29
|
sseldd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ ( Base ‘ 𝑅 ) ) |
| 31 |
1
|
subrgring |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑆 ∈ Ring ) |
| 32 |
|
eqid |
⊢ ( invr ‘ 𝑆 ) = ( invr ‘ 𝑆 ) |
| 33 |
3 32 27
|
ringinvcl |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉 ) → ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
| 34 |
31 33
|
sylan |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑆 ) ) |
| 35 |
26 34
|
sseldd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) |
| 36 |
|
eqid |
⊢ ( oppr ‘ 𝑅 ) = ( oppr ‘ 𝑅 ) |
| 37 |
36 23
|
opprbas |
⊢ ( Base ‘ 𝑅 ) = ( Base ‘ ( oppr ‘ 𝑅 ) ) |
| 38 |
|
eqid |
⊢ ( ∥r ‘ ( oppr ‘ 𝑅 ) ) = ( ∥r ‘ ( oppr ‘ 𝑅 ) ) |
| 39 |
|
eqid |
⊢ ( .r ‘ ( oppr ‘ 𝑅 ) ) = ( .r ‘ ( oppr ‘ 𝑅 ) ) |
| 40 |
37 38 39
|
dvdsrmul |
⊢ ( ( 𝑥 ∈ ( Base ‘ 𝑅 ) ∧ ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ∈ ( Base ‘ 𝑅 ) ) → 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) ) |
| 41 |
30 35 40
|
syl2anc |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) ) |
| 42 |
|
eqid |
⊢ ( .r ‘ 𝑅 ) = ( .r ‘ 𝑅 ) |
| 43 |
23 42 36 39
|
opprmul |
⊢ ( ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 𝑥 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ) |
| 44 |
|
eqid |
⊢ ( .r ‘ 𝑆 ) = ( .r ‘ 𝑆 ) |
| 45 |
3 32 44 5
|
unitrinv |
⊢ ( ( 𝑆 ∈ Ring ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 ( .r ‘ 𝑆 ) ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ) = ( 1r ‘ 𝑆 ) ) |
| 46 |
31 45
|
sylan |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 ( .r ‘ 𝑆 ) ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ) = ( 1r ‘ 𝑆 ) ) |
| 47 |
1 42
|
ressmulr |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
| 48 |
47
|
adantr |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( .r ‘ 𝑅 ) = ( .r ‘ 𝑆 ) ) |
| 49 |
48
|
oveqd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ) = ( 𝑥 ( .r ‘ 𝑆 ) ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ) ) |
| 50 |
46 49 14
|
3eqtr4d |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( 𝑥 ( .r ‘ 𝑅 ) ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ) = ( 1r ‘ 𝑅 ) ) |
| 51 |
43 50
|
eqtrid |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → ( ( ( invr ‘ 𝑆 ) ‘ 𝑥 ) ( .r ‘ ( oppr ‘ 𝑅 ) ) 𝑥 ) = ( 1r ‘ 𝑅 ) ) |
| 52 |
41 51
|
breqtrd |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) |
| 53 |
2 12 16 36 38
|
isunit |
⊢ ( 𝑥 ∈ 𝑈 ↔ ( 𝑥 ( ∥r ‘ 𝑅 ) ( 1r ‘ 𝑅 ) ∧ 𝑥 ( ∥r ‘ ( oppr ‘ 𝑅 ) ) ( 1r ‘ 𝑅 ) ) ) |
| 54 |
20 52 53
|
sylanbrc |
⊢ ( ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) ∧ 𝑥 ∈ 𝑉 ) → 𝑥 ∈ 𝑈 ) |
| 55 |
54
|
ex |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → ( 𝑥 ∈ 𝑉 → 𝑥 ∈ 𝑈 ) ) |
| 56 |
55
|
ssrdv |
⊢ ( 𝐴 ∈ ( SubRing ‘ 𝑅 ) → 𝑉 ⊆ 𝑈 ) |