Metamath Proof Explorer


Theorem zsssubrg

Description: The integers are a subset of any subring of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015)

Ref Expression
Assertion zsssubrg RSubRingfldR

Proof

Step Hyp Ref Expression
1 simpr RSubRingfldxx
2 ax-1cn 1
3 cnfldmulg x1xfld1=x1
4 1 2 3 sylancl RSubRingfldxxfld1=x1
5 zcn xx
6 5 adantl RSubRingfldxx
7 6 mulridd RSubRingfldxx1=x
8 4 7 eqtrd RSubRingfldxxfld1=x
9 subrgsubg RSubRingfldRSubGrpfld
10 9 adantr RSubRingfldxRSubGrpfld
11 cnfld1 1=1fld
12 11 subrg1cl RSubRingfld1R
13 12 adantr RSubRingfldx1R
14 eqid fld=fld
15 14 subgmulgcl RSubGrpfldx1Rxfld1R
16 10 1 13 15 syl3anc RSubRingfldxxfld1R
17 8 16 eqeltrrd RSubRingfldxxR
18 17 ex RSubRingfldxxR
19 18 ssrdv RSubRingfldR