Description: The integers are a subset of any subring of the complex numbers. (Contributed by Mario Carneiro, 15-Oct-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | zsssubrg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | simpr | |
|
2 | ax-1cn | |
|
3 | cnfldmulg | |
|
4 | 1 2 3 | sylancl | |
5 | zcn | |
|
6 | 5 | adantl | |
7 | 6 | mulridd | |
8 | 4 7 | eqtrd | |
9 | subrgsubg | |
|
10 | 9 | adantr | |
11 | cnfld1 | |
|
12 | 11 | subrg1cl | |
13 | 12 | adantr | |
14 | eqid | |
|
15 | 14 | subgmulgcl | |
16 | 10 1 13 15 | syl3anc | |
17 | 8 16 | eqeltrrd | |
18 | 17 | ex | |
19 | 18 | ssrdv | |