Metamath Proof Explorer


Theorem subgmulgcl

Description: Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypothesis subgmulgcl.t · ˙ = G
Assertion subgmulgcl S SubGrp G N X S N · ˙ X S

Proof

Step Hyp Ref Expression
1 subgmulgcl.t · ˙ = G
2 eqid Base G = Base G
3 eqid + G = + G
4 subgrcl S SubGrp G G Grp
5 2 subgss S SubGrp G S Base G
6 3 subgcl S SubGrp G x S y S x + G y S
7 eqid 0 G = 0 G
8 7 subg0cl S SubGrp G 0 G S
9 eqid inv g G = inv g G
10 9 subginvcl S SubGrp G x S inv g G x S
11 2 1 3 4 5 6 7 8 9 10 mulgsubcl S SubGrp G N X S N · ˙ X S