Metamath Proof Explorer


Theorem subgmulgcl

Description: Closure of the group multiple (exponentiation) operation in a subgroup. (Contributed by Mario Carneiro, 13-Jan-2015)

Ref Expression
Hypothesis subgmulgcl.t ·˙=G
Assertion subgmulgcl SSubGrpGNXSN·˙XS

Proof

Step Hyp Ref Expression
1 subgmulgcl.t ·˙=G
2 eqid BaseG=BaseG
3 eqid +G=+G
4 subgrcl SSubGrpGGGrp
5 2 subgss SSubGrpGSBaseG
6 3 subgcl SSubGrpGxSySx+GyS
7 eqid 0G=0G
8 7 subg0cl SSubGrpG0GS
9 eqid invgG=invgG
10 9 subginvcl SSubGrpGxSinvgGxS
11 2 1 3 4 5 6 7 8 9 10 mulgsubcl SSubGrpGNXSN·˙XS