| Step | Hyp | Ref | Expression | 
						
							| 1 |  | oveq1 |  | 
						
							| 2 |  | oveq1 |  | 
						
							| 3 | 1 2 | eqeq12d |  | 
						
							| 4 |  | oveq1 |  | 
						
							| 5 |  | oveq1 |  | 
						
							| 6 | 4 5 | eqeq12d |  | 
						
							| 7 |  | oveq1 |  | 
						
							| 8 |  | oveq1 |  | 
						
							| 9 | 7 8 | eqeq12d |  | 
						
							| 10 |  | oveq1 |  | 
						
							| 11 |  | oveq1 |  | 
						
							| 12 | 10 11 | eqeq12d |  | 
						
							| 13 |  | oveq1 |  | 
						
							| 14 |  | oveq1 |  | 
						
							| 15 | 13 14 | eqeq12d |  | 
						
							| 16 |  | cnfldbas |  | 
						
							| 17 |  | cnfld0 |  | 
						
							| 18 |  | eqid |  | 
						
							| 19 | 16 17 18 | mulg0 |  | 
						
							| 20 |  | mul02 |  | 
						
							| 21 | 19 20 | eqtr4d |  | 
						
							| 22 |  | oveq1 |  | 
						
							| 23 |  | cnring |  | 
						
							| 24 |  | ringmnd |  | 
						
							| 25 | 23 24 | ax-mp |  | 
						
							| 26 |  | cnfldadd |  | 
						
							| 27 | 16 18 26 | mulgnn0p1 |  | 
						
							| 28 | 25 27 | mp3an1 |  | 
						
							| 29 |  | nn0cn |  | 
						
							| 30 | 29 | adantr |  | 
						
							| 31 |  | simpr |  | 
						
							| 32 | 30 31 | adddirp1d |  | 
						
							| 33 | 28 32 | eqeq12d |  | 
						
							| 34 | 22 33 | imbitrrid |  | 
						
							| 35 | 34 | expcom |  | 
						
							| 36 |  | fveq2 |  | 
						
							| 37 |  | eqid |  | 
						
							| 38 | 16 18 37 | mulgnegnn |  | 
						
							| 39 |  | nncn |  | 
						
							| 40 |  | mulneg1 |  | 
						
							| 41 | 39 40 | sylan |  | 
						
							| 42 |  | mulcl |  | 
						
							| 43 | 39 42 | sylan |  | 
						
							| 44 |  | cnfldneg |  | 
						
							| 45 | 43 44 | syl |  | 
						
							| 46 | 41 45 | eqtr4d |  | 
						
							| 47 | 38 46 | eqeq12d |  | 
						
							| 48 | 36 47 | imbitrrid |  | 
						
							| 49 | 48 | expcom |  | 
						
							| 50 | 3 6 9 12 15 21 35 49 | zindd |  | 
						
							| 51 | 50 | impcom |  |