Description: The group multiple function in the field of complex numbers. (Contributed by Mario Carneiro, 14-Jun-2015)
Ref | Expression | ||
---|---|---|---|
Assertion | cnfldmulg | |
Step | Hyp | Ref | Expression |
---|---|---|---|
1 | oveq1 | |
|
2 | oveq1 | |
|
3 | 1 2 | eqeq12d | |
4 | oveq1 | |
|
5 | oveq1 | |
|
6 | 4 5 | eqeq12d | |
7 | oveq1 | |
|
8 | oveq1 | |
|
9 | 7 8 | eqeq12d | |
10 | oveq1 | |
|
11 | oveq1 | |
|
12 | 10 11 | eqeq12d | |
13 | oveq1 | |
|
14 | oveq1 | |
|
15 | 13 14 | eqeq12d | |
16 | cnfldbas | |
|
17 | cnfld0 | |
|
18 | eqid | |
|
19 | 16 17 18 | mulg0 | |
20 | mul02 | |
|
21 | 19 20 | eqtr4d | |
22 | oveq1 | |
|
23 | cnring | |
|
24 | ringmnd | |
|
25 | 23 24 | ax-mp | |
26 | cnfldadd | |
|
27 | 16 18 26 | mulgnn0p1 | |
28 | 25 27 | mp3an1 | |
29 | nn0cn | |
|
30 | 29 | adantr | |
31 | simpr | |
|
32 | 30 31 | adddirp1d | |
33 | 28 32 | eqeq12d | |
34 | 22 33 | imbitrrid | |
35 | 34 | expcom | |
36 | fveq2 | |
|
37 | eqid | |
|
38 | 16 18 37 | mulgnegnn | |
39 | nncn | |
|
40 | mulneg1 | |
|
41 | 39 40 | sylan | |
42 | mulcl | |
|
43 | 39 42 | sylan | |
44 | cnfldneg | |
|
45 | 43 44 | syl | |
46 | 41 45 | eqtr4d | |
47 | 38 46 | eqeq12d | |
48 | 36 47 | imbitrrid | |
49 | 48 | expcom | |
50 | 3 6 9 12 15 21 35 49 | zindd | |
51 | 50 | impcom | |