Metamath Proof Explorer


Theorem cnfldmulg

Description: The group multiple function in the field of complex numbers. (Contributed by Mario Carneiro, 14-Jun-2015)

Ref Expression
Assertion cnfldmulg ABAfldB=AB

Proof

Step Hyp Ref Expression
1 oveq1 x=0xfldB=0fldB
2 oveq1 x=0xB=0B
3 1 2 eqeq12d x=0xfldB=xB0fldB=0B
4 oveq1 x=yxfldB=yfldB
5 oveq1 x=yxB=yB
6 4 5 eqeq12d x=yxfldB=xByfldB=yB
7 oveq1 x=y+1xfldB=y+1fldB
8 oveq1 x=y+1xB=y+1B
9 7 8 eqeq12d x=y+1xfldB=xBy+1fldB=y+1B
10 oveq1 x=yxfldB=yfldB
11 oveq1 x=yxB=yB
12 10 11 eqeq12d x=yxfldB=xByfldB=yB
13 oveq1 x=AxfldB=AfldB
14 oveq1 x=AxB=AB
15 13 14 eqeq12d x=AxfldB=xBAfldB=AB
16 cnfldbas =Basefld
17 cnfld0 0=0fld
18 eqid fld=fld
19 16 17 18 mulg0 B0fldB=0
20 mul02 B0B=0
21 19 20 eqtr4d B0fldB=0B
22 oveq1 yfldB=yByfldB+B=yB+B
23 cnring fldRing
24 ringmnd fldRingfldMnd
25 23 24 ax-mp fldMnd
26 cnfldadd +=+fld
27 16 18 26 mulgnn0p1 fldMndy0By+1fldB=yfldB+B
28 25 27 mp3an1 y0By+1fldB=yfldB+B
29 nn0cn y0y
30 29 adantr y0By
31 simpr y0BB
32 30 31 adddirp1d y0By+1B=yB+B
33 28 32 eqeq12d y0By+1fldB=y+1ByfldB+B=yB+B
34 22 33 imbitrrid y0ByfldB=yBy+1fldB=y+1B
35 34 expcom By0yfldB=yBy+1fldB=y+1B
36 fveq2 yfldB=yBinvgfldyfldB=invgfldyB
37 eqid invgfld=invgfld
38 16 18 37 mulgnegnn yByfldB=invgfldyfldB
39 nncn yy
40 mulneg1 yByB=yB
41 39 40 sylan yByB=yB
42 mulcl yByB
43 39 42 sylan yByB
44 cnfldneg yBinvgfldyB=yB
45 43 44 syl yBinvgfldyB=yB
46 41 45 eqtr4d yByB=invgfldyB
47 38 46 eqeq12d yByfldB=yBinvgfldyfldB=invgfldyB
48 36 47 imbitrrid yByfldB=yByfldB=yB
49 48 expcom ByyfldB=yByfldB=yB
50 3 6 9 12 15 21 35 49 zindd BAAfldB=AB
51 50 impcom ABAfldB=AB