| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnfldms |  |-  CCfld e. MetSp | 
						
							| 2 |  | eqid |  |-  ( abs o. - ) = ( abs o. - ) | 
						
							| 3 | 2 | cncmet |  |-  ( abs o. - ) e. ( CMet ` CC ) | 
						
							| 4 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 5 |  | cnmet |  |-  ( abs o. - ) e. ( Met ` CC ) | 
						
							| 6 |  | metf |  |-  ( ( abs o. - ) e. ( Met ` CC ) -> ( abs o. - ) : ( CC X. CC ) --> RR ) | 
						
							| 7 | 5 6 | ax-mp |  |-  ( abs o. - ) : ( CC X. CC ) --> RR | 
						
							| 8 |  | ffn |  |-  ( ( abs o. - ) : ( CC X. CC ) --> RR -> ( abs o. - ) Fn ( CC X. CC ) ) | 
						
							| 9 |  | fnresdm |  |-  ( ( abs o. - ) Fn ( CC X. CC ) -> ( ( abs o. - ) |` ( CC X. CC ) ) = ( abs o. - ) ) | 
						
							| 10 | 7 8 9 | mp2b |  |-  ( ( abs o. - ) |` ( CC X. CC ) ) = ( abs o. - ) | 
						
							| 11 |  | cnfldds |  |-  ( abs o. - ) = ( dist ` CCfld ) | 
						
							| 12 | 11 | reseq1i |  |-  ( ( abs o. - ) |` ( CC X. CC ) ) = ( ( dist ` CCfld ) |` ( CC X. CC ) ) | 
						
							| 13 | 10 12 | eqtr3i |  |-  ( abs o. - ) = ( ( dist ` CCfld ) |` ( CC X. CC ) ) | 
						
							| 14 | 4 13 | iscms |  |-  ( CCfld e. CMetSp <-> ( CCfld e. MetSp /\ ( abs o. - ) e. ( CMet ` CC ) ) ) | 
						
							| 15 | 1 3 14 | mpbir2an |  |-  CCfld e. CMetSp |