Metamath Proof Explorer


Theorem cnflduss

Description: The uniform structure of the complex numbers. (Contributed by Thierry Arnoux, 17-Dec-2017) (Revised by Thierry Arnoux, 11-Mar-2018)

Ref Expression
Hypothesis cnflduss.1
|- U = ( UnifSt ` CCfld )
Assertion cnflduss
|- U = ( metUnif ` ( abs o. - ) )

Proof

Step Hyp Ref Expression
1 cnflduss.1
 |-  U = ( UnifSt ` CCfld )
2 0cn
 |-  0 e. CC
3 2 ne0ii
 |-  CC =/= (/)
4 cnxmet
 |-  ( abs o. - ) e. ( *Met ` CC )
5 xmetpsmet
 |-  ( ( abs o. - ) e. ( *Met ` CC ) -> ( abs o. - ) e. ( PsMet ` CC ) )
6 4 5 ax-mp
 |-  ( abs o. - ) e. ( PsMet ` CC )
7 metuust
 |-  ( ( CC =/= (/) /\ ( abs o. - ) e. ( PsMet ` CC ) ) -> ( metUnif ` ( abs o. - ) ) e. ( UnifOn ` CC ) )
8 3 6 7 mp2an
 |-  ( metUnif ` ( abs o. - ) ) e. ( UnifOn ` CC )
9 ustuni
 |-  ( ( metUnif ` ( abs o. - ) ) e. ( UnifOn ` CC ) -> U. ( metUnif ` ( abs o. - ) ) = ( CC X. CC ) )
10 8 9 ax-mp
 |-  U. ( metUnif ` ( abs o. - ) ) = ( CC X. CC )
11 10 eqcomi
 |-  ( CC X. CC ) = U. ( metUnif ` ( abs o. - ) )
12 cnfldbas
 |-  CC = ( Base ` CCfld )
13 cnfldunif
 |-  ( metUnif ` ( abs o. - ) ) = ( UnifSet ` CCfld )
14 12 13 ussid
 |-  ( ( CC X. CC ) = U. ( metUnif ` ( abs o. - ) ) -> ( metUnif ` ( abs o. - ) ) = ( UnifSt ` CCfld ) )
15 11 14 ax-mp
 |-  ( metUnif ` ( abs o. - ) ) = ( UnifSt ` CCfld )
16 1 15 eqtr4i
 |-  U = ( metUnif ` ( abs o. - ) )