| Step | Hyp | Ref | Expression | 
						
							| 1 |  | cnflduss.1 |  |-  U = ( UnifSt ` CCfld ) | 
						
							| 2 |  | 0cn |  |-  0 e. CC | 
						
							| 3 | 2 | ne0ii |  |-  CC =/= (/) | 
						
							| 4 |  | cnxmet |  |-  ( abs o. - ) e. ( *Met ` CC ) | 
						
							| 5 |  | xmetpsmet |  |-  ( ( abs o. - ) e. ( *Met ` CC ) -> ( abs o. - ) e. ( PsMet ` CC ) ) | 
						
							| 6 | 4 5 | ax-mp |  |-  ( abs o. - ) e. ( PsMet ` CC ) | 
						
							| 7 |  | metuust |  |-  ( ( CC =/= (/) /\ ( abs o. - ) e. ( PsMet ` CC ) ) -> ( metUnif ` ( abs o. - ) ) e. ( UnifOn ` CC ) ) | 
						
							| 8 | 3 6 7 | mp2an |  |-  ( metUnif ` ( abs o. - ) ) e. ( UnifOn ` CC ) | 
						
							| 9 |  | ustuni |  |-  ( ( metUnif ` ( abs o. - ) ) e. ( UnifOn ` CC ) -> U. ( metUnif ` ( abs o. - ) ) = ( CC X. CC ) ) | 
						
							| 10 | 8 9 | ax-mp |  |-  U. ( metUnif ` ( abs o. - ) ) = ( CC X. CC ) | 
						
							| 11 | 10 | eqcomi |  |-  ( CC X. CC ) = U. ( metUnif ` ( abs o. - ) ) | 
						
							| 12 |  | cnfldbas |  |-  CC = ( Base ` CCfld ) | 
						
							| 13 |  | cnfldunif |  |-  ( metUnif ` ( abs o. - ) ) = ( UnifSet ` CCfld ) | 
						
							| 14 | 12 13 | ussid |  |-  ( ( CC X. CC ) = U. ( metUnif ` ( abs o. - ) ) -> ( metUnif ` ( abs o. - ) ) = ( UnifSt ` CCfld ) ) | 
						
							| 15 | 11 14 | ax-mp |  |-  ( metUnif ` ( abs o. - ) ) = ( UnifSt ` CCfld ) | 
						
							| 16 | 1 15 | eqtr4i |  |-  U = ( metUnif ` ( abs o. - ) ) |