| Step | Hyp | Ref | Expression | 
						
							| 1 |  | iscms.1 |  |-  X = ( Base ` M ) | 
						
							| 2 |  | iscms.2 |  |-  D = ( ( dist ` M ) |` ( X X. X ) ) | 
						
							| 3 |  | fvexd |  |-  ( w = M -> ( Base ` w ) e. _V ) | 
						
							| 4 |  | fveq2 |  |-  ( w = M -> ( dist ` w ) = ( dist ` M ) ) | 
						
							| 5 | 4 | adantr |  |-  ( ( w = M /\ b = ( Base ` w ) ) -> ( dist ` w ) = ( dist ` M ) ) | 
						
							| 6 |  | id |  |-  ( b = ( Base ` w ) -> b = ( Base ` w ) ) | 
						
							| 7 |  | fveq2 |  |-  ( w = M -> ( Base ` w ) = ( Base ` M ) ) | 
						
							| 8 | 7 1 | eqtr4di |  |-  ( w = M -> ( Base ` w ) = X ) | 
						
							| 9 | 6 8 | sylan9eqr |  |-  ( ( w = M /\ b = ( Base ` w ) ) -> b = X ) | 
						
							| 10 | 9 | sqxpeqd |  |-  ( ( w = M /\ b = ( Base ` w ) ) -> ( b X. b ) = ( X X. X ) ) | 
						
							| 11 | 5 10 | reseq12d |  |-  ( ( w = M /\ b = ( Base ` w ) ) -> ( ( dist ` w ) |` ( b X. b ) ) = ( ( dist ` M ) |` ( X X. X ) ) ) | 
						
							| 12 | 11 2 | eqtr4di |  |-  ( ( w = M /\ b = ( Base ` w ) ) -> ( ( dist ` w ) |` ( b X. b ) ) = D ) | 
						
							| 13 | 9 | fveq2d |  |-  ( ( w = M /\ b = ( Base ` w ) ) -> ( CMet ` b ) = ( CMet ` X ) ) | 
						
							| 14 | 12 13 | eleq12d |  |-  ( ( w = M /\ b = ( Base ` w ) ) -> ( ( ( dist ` w ) |` ( b X. b ) ) e. ( CMet ` b ) <-> D e. ( CMet ` X ) ) ) | 
						
							| 15 | 3 14 | sbcied |  |-  ( w = M -> ( [. ( Base ` w ) / b ]. ( ( dist ` w ) |` ( b X. b ) ) e. ( CMet ` b ) <-> D e. ( CMet ` X ) ) ) | 
						
							| 16 |  | df-cms |  |-  CMetSp = { w e. MetSp | [. ( Base ` w ) / b ]. ( ( dist ` w ) |` ( b X. b ) ) e. ( CMet ` b ) } | 
						
							| 17 | 15 16 | elrab2 |  |-  ( M e. CMetSp <-> ( M e. MetSp /\ D e. ( CMet ` X ) ) ) |