Description: The induced metric on a complete normed group is complete. (Contributed by Mario Carneiro, 15-Oct-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscms.1 | |- X = ( Base ` M ) | |
| iscms.2 | |- D = ( ( dist ` M ) |` ( X X. X ) ) | ||
| Assertion | cmscmet | |- ( M e. CMetSp -> D e. ( CMet ` X ) ) | 
| Step | Hyp | Ref | Expression | 
|---|---|---|---|
| 1 | iscms.1 | |- X = ( Base ` M ) | |
| 2 | iscms.2 | |- D = ( ( dist ` M ) |` ( X X. X ) ) | |
| 3 | 1 2 | iscms | |- ( M e. CMetSp <-> ( M e. MetSp /\ D e. ( CMet ` X ) ) ) | 
| 4 | 3 | simprbi | |- ( M e. CMetSp -> D e. ( CMet ` X ) ) |