| Step |
Hyp |
Ref |
Expression |
| 1 |
|
cnmet |
|- ( abs o. - ) e. ( Met ` CC ) |
| 2 |
|
eqid |
|- ( MetOpen ` ( abs o. - ) ) = ( MetOpen ` ( abs o. - ) ) |
| 3 |
|
cnxmet |
|- ( abs o. - ) e. ( *Met ` CC ) |
| 4 |
2
|
mopntopon |
|- ( ( abs o. - ) e. ( *Met ` CC ) -> ( MetOpen ` ( abs o. - ) ) e. ( TopOn ` CC ) ) |
| 5 |
|
cnfldbas |
|- CC = ( Base ` CCfld ) |
| 6 |
|
cnfldtset |
|- ( MetOpen ` ( abs o. - ) ) = ( TopSet ` CCfld ) |
| 7 |
5 6
|
topontopn |
|- ( ( MetOpen ` ( abs o. - ) ) e. ( TopOn ` CC ) -> ( MetOpen ` ( abs o. - ) ) = ( TopOpen ` CCfld ) ) |
| 8 |
3 4 7
|
mp2b |
|- ( MetOpen ` ( abs o. - ) ) = ( TopOpen ` CCfld ) |
| 9 |
|
absf |
|- abs : CC --> RR |
| 10 |
|
subf |
|- - : ( CC X. CC ) --> CC |
| 11 |
|
fco |
|- ( ( abs : CC --> RR /\ - : ( CC X. CC ) --> CC ) -> ( abs o. - ) : ( CC X. CC ) --> RR ) |
| 12 |
9 10 11
|
mp2an |
|- ( abs o. - ) : ( CC X. CC ) --> RR |
| 13 |
|
ffn |
|- ( ( abs o. - ) : ( CC X. CC ) --> RR -> ( abs o. - ) Fn ( CC X. CC ) ) |
| 14 |
|
fnresdm |
|- ( ( abs o. - ) Fn ( CC X. CC ) -> ( ( abs o. - ) |` ( CC X. CC ) ) = ( abs o. - ) ) |
| 15 |
12 13 14
|
mp2b |
|- ( ( abs o. - ) |` ( CC X. CC ) ) = ( abs o. - ) |
| 16 |
|
cnfldds |
|- ( abs o. - ) = ( dist ` CCfld ) |
| 17 |
16
|
reseq1i |
|- ( ( abs o. - ) |` ( CC X. CC ) ) = ( ( dist ` CCfld ) |` ( CC X. CC ) ) |
| 18 |
15 17
|
eqtr3i |
|- ( abs o. - ) = ( ( dist ` CCfld ) |` ( CC X. CC ) ) |
| 19 |
8 5 18
|
isms2 |
|- ( CCfld e. MetSp <-> ( ( abs o. - ) e. ( Met ` CC ) /\ ( MetOpen ` ( abs o. - ) ) = ( MetOpen ` ( abs o. - ) ) ) ) |
| 20 |
1 2 19
|
mpbir2an |
|- CCfld e. MetSp |